Midterm Mathematical Structures TW1010 Monday November 5, 2018, 9:00-11:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+6)/6.

Exercise	continued (extra space)

	$f \in \mathbb{R} \ \exists y \in \mathbb{R} : x > y$
1b. ∃ <i>u</i>	$\in \mathbb{R} \ \forall x \in \mathbb{R} : x > y$
10 Jg	
_	e logical tautology which underlies the structure of the following proof. Also which statements the variables p , q , etc. represent. Em: If n is a prime number, then either $n = 2$ or n is odd.
Theore	Suppose n is a prime number which is not odd. Then n is even, so n is a divisible as any prime number is divisible only by 1 and itself, n must equal 2. Thus n
Theore Proof: by 2. A	own that any prime number is either 2 or odd.
Theore Proof: by 2. A	

• My exa	mple relation is defined as	
• The rela	ation is reflexive as	
• The rela	ation is symmetric as	
• The rel	ation is not transitive as	

Given a function $f: A \to B$ and a subset $C \subseteq A$.	
5a Complete the definition: The image $f(C)$ equals	
5b Chow that $f(f^{-1}(f(C))) = f(C)$	
5b Show that $f(f^{-1}(f(C))) = f(C)$.	

6 Define the sequence (F_n) recursively by $F_1=1$ and $F_2=1$ and $F_{n+2}=2F_{n+1}+3F_n$ for $n\geq 1$. Show that for all $n\in\mathbb{N}$ we have

$$F_1 + F_2 + F_3 + \dots + F_n = \frac{1}{4}(F_{n+2} - F_{n+1})$$

Show that $\lim_{n\to\infty} (s_n)^{\frac{1}{3}} = s^{\frac{1}{3}}$. **Hint:** The equation $(a - b)(a^2 + ab + b^2) = a^3 - b^3$ might be useful. Remark: You are not allowed to use continuity in your solution.

8 Suppose (s_n) is a convergent sequence with $s_n \geq 0$ for all n, and $\lim_{n\to\infty} s_n = s > 0$.

Complete the def	mition. The god	wanaa (a) ia b	ounded if	
Complete the def	imuon. The seq	quence (s_n) is b	ounded ii	

Examiner responsible: Fokko van de Bult

Examination reviewers: Wolter Groenevelt, Emiel Lorist, Rik Versendaal, Nick Lindemulder.