Resit Exam Mathematical Structures TW1010 Thursday April 18, 2019, 9:00-12:00 TUDelft

No calculators allowed. Write the solutions in the fields provided. The grade is (score+8)/8.

Exercise	continued (extra space)

Exercise 1 is at the bottom of this page!

Exercise	continued (extra space)	
1 Determine using The truth tables	ng a truth table whether or not $(p \land q) \Rightarrow (p \lor q)$ is a tautology.	4
	te is given by	

Don't forget Exercise 1 on the previous page!

	ation on \mathbb{Q} which is transitive, reflexive, but not symmetric. on R is defined as xRy holds whenever
The relation	on R is reflexive as
The relation	on R is not symmetric as
The relation	on R is transitive as

3	Find the error in the following proof.	4
	Theorem: For any function $f: \mathbb{R} \to \mathbb{R}$ we have $f(A \setminus C) \subseteq f(A) \setminus f(C)$.	
	Proof:	
	1. Suppose $y \in f(A \setminus C)$.	
	2. Then there exists $x \in A \setminus C$ with $f(x) = y$.	
	3. Therefore $x \in A$ and $x \notin C$.	
	4. As $x \in A$ we have $f(x) \in f(A)$.	
	5. As $x \notin C$ we have $f(x) \notin f(C)$.	
	6. Hence $f(x) \in f(A) \setminus f(C)$.	
	7. As $y = f(x)$ we conclude $y \in f(A) \setminus f(C)$.	
	8. As we have shown for all y that $y \in f(A \setminus C) \Rightarrow y \in f(A) \setminus f(C)$ we have $f(A \setminus C) \subseteq f(A) \setminus f(C)$.	
	The error in the proof occurs at line number This statement is wrong as	
_		
_		
_		
_		
_		
1	Formulate the completeness axiom for the real numbers.	2
7	Tormulate the completeness axiom for the real numbers.	2
_		
_		
_		
_		

5a Suppose $f:\mathbb{R}\to\mathbb{R}$ is a decreasing function and $A\subseteq\mathbb{R}$ is a bounded set. Show that

- 7 The sequence (a_n) is defined recursively as $a_{n+1} = \sqrt{8 + \frac{1}{2}a_n a_{n-1}}$, starting with $a_1 = 1$ and $a_2 = 2$.
- 7a Use induction to prove that (a_n) is increasing. **Hint:** Use the statement $P(n): a_n \leq a_{n+1} \leq a_{n+2}$.

D. 4 41 . 12 4 . 12			
Determine the limit $\lim a_n$	=a.		

```
A1 \forall x,y \in \mathbb{R}: x+y \in \mathbb{R} \text{ and } x=w \wedge y=z \Rightarrow x+y=w+z; A2 \forall x,y \in \mathbb{R}: x+y=y+x; A3 \forall x,y,z \in \mathbb{R}: x+(y+z)=(x+y)+z; A4 \exists 0: \forall x \in \mathbb{R}: x+0=x \text{ and this } 0 \text{ is unique}; A5 \forall x \in \mathbb{R}: \exists (-x) \in \mathbb{R}: x+(-x)=0 \text{ and } (-x) \text{ is unique}; M1 \forall x,y \in \mathbb{R}: x\cdot y \in \mathbb{R} \text{ and } x=w \wedge y=z \Rightarrow x\cdot y=w\cdot z; M2 \forall x,y \in \mathbb{R}: x\cdot y=y\cdot x; M3 \forall x,y,z \in \mathbb{R}: x\cdot (y\cdot z)=(x\cdot y)\cdot z; M4 \exists 1\neq 0: \forall x \in \mathbb{R}: x\cdot (1/x)=1 \text{ and } (1/x) \text{ is unique}; M5 \forall x,y,z \in \mathbb{R}: x\cdot (y+z)=x\cdot y+x\cdot z; O1 For all x,y \in \mathbb{R} exactly one of x=y,x>y, holds x< y; O2 \forall x,y,z \in \mathbb{R}: x< y \wedge y < z \Rightarrow x < z; O3 \forall x,y,z \in \mathbb{R}: x< y \wedge y < z \Rightarrow xz < yz. O4 \forall x,y,z \in \mathbb{R}: x< y \wedge 0 < z \Rightarrow xz < yz.
```

9 Show using the axioms that $(x+y)^2 = x^2 + (2(xy) + y^2)$. Here we use the notations $x^2 = x \cdot x$ and 2 = 1 + 1. Be sure to precisely indicate what axioms you use in each step.

) Gl	ve the definition of convergence of a series. A series $\sum_{n=1}^{\infty} a_n$ converges if
l De	etermine whether or not the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ converges, and if it does converge, whether is convergence is absolute or conditional.

12 Determine for all x whether $\sum_{n=1}^{\infty} \frac{(2n)!}{n!} x^n$ converges or diverges. Also determine when the series is absolutely or conditionally convergent.
(Fill in things like $x \in [2,3)$ or $x=5$ in the boxes below <u>after</u> doing your calculations.)
• The series converges absolutely for
• The series converges conditionally for
• The series diverges for

Examiner responsible: Fokko van de Bult

Examination reviewers: Wolter Groenevelt, Rik Versendaal.