

Final exam Linear Algebra 1, TW1030 Tuesday 30 October 2018, 09:00-12:00.

Name:					
Student 1	D:				

This exam consists of two parts: short answer questions and open questions. The answer to each open question must contain a complete explanation. Devices like calculators, mobile phones, laptops, sheets with formulas, etc, may not be used. The grade is determined by adding 6 points to your total score and dividing the result by 6.

Short answer questions (10 questions, 5 on the other side!)

 $\mathbf{K1.}$ We have

(2)

$$A = \begin{bmatrix} 1 & 1 & 3 & -2 \\ 2 & -5 & 3 & 1 \\ -3 & 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 3 & -2 \\ 0 & -7 & -3 & 5 \\ 0 & 4 & 11 & -4 \end{bmatrix} = B.$$

Give a matrix E such that B = EA.

- (2) **K2.** Circle "yes" if the given transformation is linear, otherwise circle "no".
 - (b) The orthogonal projection $T_2: \mathbb{R}^5 \to \mathbb{R}^5$ on Nul($\begin{bmatrix} 3 & -1 & 0 & 2 & 0 \end{bmatrix}$) yes/no

(a) The map $T_1: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T_1([x_1, x_2, x_3]^T) = [x_1 - |x_2| + x_3, 2x_1 + x_2 + x_3]^T$ yes/no

- (c) The map $T_3: \mathbb{R}^4 \to \mathbb{R}$ defined by $T_3([x_1, x_2, x_3, x_4]^T) = \det \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$ yes/no
- **K3.** The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the projection on the line y = x, followed by the rotation *counterclockwise* about the origin through an angle of 135°.
 - (a) Give the standardmatrix of T.
- (b) Circle two times "yes" or "no": T is injective: yes/no surjective: yes/no
- K4. A is the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. The rank of this matrix is 3 and the rank of the matrix A I is less than three. Mark for each of the following statements whether it is true or false.
 - ullet 2 is an eigenvalue because each diagonal entry of A equals 2.
 - 1 is an eigenvalue because the rank of A-I is smaller than 3.
 - ullet 0 is not an eigenvalue because the rank of A is 3.
 - the vector $[1,1,1]^T$ is an eigenvector of A.

	[1	1	5
K5. Let $A =$	0	-2	7
K5. Let $A =$	0	0	-2

(a) The eigenvalues of A^{-1} are (2)

- (2)
- (b) Give an eigenvector of A^{-1} corresponding to a negative eigenvalue.
- **K6.** Circle for each of the following statements about the matrices

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$

whether it is true or false:

(a) A is an orthogonal matrix.

True/False

(b) B is an orthogonal matrix.

True/False

K7. Give all possible values for the determinant of an orthogonal matrix. (2)

K8. How can the matrix of the orthogonal projection on Col(A) be found if $A = \begin{bmatrix} 2 & 2 & 8 \\ 3 & -1 & 0 \end{bmatrix}$. (2)

short explanation

K9. For $\mathbf{p} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$ and $W = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$ it is given that \mathbf{p} is the orthogonal projection of **b** on W. Find a en b.

K10. Let $A = \begin{bmatrix} 2 & 2 & 4 \\ 2 & b & a \\ 4 & 8 & 9 \end{bmatrix}$ with $a, b \in \mathbb{R}$.

(a) Find all values of a en b that make this matrix symmetric and positive definite. (2)

(b) Take a = 8 and b = 18. Why does there not exist an invertible 3×3 -matrix W such that (2) $A = W^T W$?

short explanation

1. Let

$$P = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Furthermore $A = PDP^{-1}$. Answer the next questions without computing A! Explain your answers!

- (a) Find $\det(A)$.
 - (b) True or false: $A^{-1} = A$?
 - (c) Let $\mathbf{x}_0 = (0,0,3)^T$. For $k \in \mathbb{N}$ find $A^k \mathbf{x}_0$.
 - (d) Let

(2)

(3)

(2)

(2)

(2)

(3)

(2)

(1)

(2)

$$R = \begin{bmatrix} 1 & -1 & 1 \\ -1 & -1 & -2 \\ 0 & -1 & 2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Are A and RCR^{-1} equal?

- (e) Is A symmetric?
 - (f) Does there exist a matrix B such that $A = B^T B$?
- (g) Find Nul(A 3I).

2. Let

$$A = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 1 & 4 & 3 & 4 & 3 \\ 3 & 4 & 1 & 0 & -3 \\ 1 & -1 & -2 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 1 & -2 & -2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = U$$

and let W be the nullspace of A. Furthermore let

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 5 \\ 3 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

- (a) Show that $\{\mathbf{w}_1, \mathbf{w}_2\}$ is a basis for W. Do this without solving a system!!
 - (b) Find the orthogonal projection \mathbf{p} of \mathbf{b} on W and find the distance of \mathbf{b} to W.
- (c) Give a vector **c**, not equal to **b** or **p**, such that its orthogonal projection on W equals **p**.
 - **3.** In \mathbb{R}^n (with $n \geq 2$) are taken two vectors \mathbf{u} and \mathbf{v} such that $\mathbf{u} \cdot \mathbf{v} = 1$. With these vectors we define the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ by

$$T(\mathbf{x}) = \mathbf{x} - (\mathbf{u} \cdot \mathbf{x})\mathbf{v}$$

(you don't need to prove that T is linear).

- (a) Is \mathbf{v} een eigenvector of T? If yes, also give the corresponding eigenvalue. [Remark: λ is an eigenvalue of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ if an eigenvector $\mathbf{x} \neq \mathbf{0}$ exists, such that $T(\mathbf{x}) = \lambda \mathbf{x}$.]
 - (b) (i) Show that the nonzero vectors orthogonal with \mathbf{u} are eigenvectors of T. Also give the corresponding eigenvalue.
 - (ii) Why is the dimension of the corresponding eigenspace equal to n-1?
- (2) (c) Show, by using (a) and (b), that T is diagonalizable. [Remark: a transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is diagonalizable if and only if \mathbb{R}^n has a basis containing only eigenvectors of T.]