(2)

(2)

(2)

(13)

(3)

K1.

K2.

K3.

K4.

Delft University of Technology 4
Faculty of Electrical Engineering, Mathematics and Computer Science T U D I f t
Van Mourik Broekmanweg 6, Delft e

Final exam Linear Algebra 1, TW1030
Tuesday 30 October 2018, 09:00-12:00.

Name:

Student ID:

This exam consists of two parts: short answer questions and open questions. The answer to
each open question must contain a complete explanation. Devices like calculators,
mobile phones, laptops, sheets with formulas, etc, may not be used. The grade is determined by
adding 6 points to your total score and dividing the result by 6.

Short answer questions (10 questions, 5 on the other side!)

‘We have
1 1 3 -2 1 1 3 =2
A= 2 -5 3 1~ 0 =7 =3 5 | =B.
-3 1 2 2 0 4 11 -4

Give a matrix F such that B = FA.

Circle “yes” if the given transformation is linear, otherwise circle “no”.

(a) Themap Ty : R?® — R? defined by Ty ([z1, 22, 23]7) = [21 — |22| + 23, 271 + 22 +23]7 | yes/no

(b) The orthogonal projection T : R®> - R on Nul([3 -1 0 2 0])
T
(c) The map T3 : R* — R defined by T3([z1, T2, z3, 24]7) = det [ x; Sﬂi ]

The linear transformation 7 : R? — R? is the projection on the line y = x, followed by the
rotation counterclockwise about the origin through an angle of 135°.

(a) Give the standardmatrix of 7.

4

(b) Circle two times “yes” or “no”: T is injective: yes/no

surjective: yes/no

2 1
A is the matrix | 1 2 . The rank of this matrix is 3 and the rank of the matrix A — I is
1 1

o N = =

less than three. Mark for each of the following statements whether it is true or false.
e 2 is an eigenvalue because each diagonal entry of A equals 2. true/false
e 1 is an eigenvalue because the rank of A — I is smaller than 3. true/false

e ( is not an eigenvalue because the rank of A is 3. true/false

e the vector [1,1,1]7 is an eigenvector of A. true/false

SEE NEXT PAGE
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1 1 )
Let A= 0 -2 7
0 0 -2

(a) The eigenvalues of A~! are

(b) Give an eigenvector of A~! corresponding to a negative eigenvalue.

Circle for each of the following statements about the matrices

i L1
A=— and B=|1 -1 -1
211 -1 1 1 0 0

1 1 1

whether it is true or false:

(a) A is an orthogonal matrix. True/False
(b) B is an orthogonal matrix. True/False

Give all possible values for the determinant of an orthogonal matrix.

How can the matrix of the orthogonal projection on Col(A) be found if A =

S W N =
|
— N
w O 0o =

short explanation

2 a 0 2
Forp=|3 |,b=| b [and W = Span 11,1 it is given that p is the orthogonal
4 1 2 0
projection of b on W. Find a en b. a= h—
2 2 4
Let A= 2 b a | witha,beR.
4 8 9

(a) Find all values of a en b that make this matrix symmetric and positive definite.

a b

(b) Take a = 8 and b = 18. Why does there not exist an invertible 3 x 3-matrix W such that
A=wWTWw?

short explanation

END OF SHORT ANSWER QUESTIONS
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TW1030, Tuesday 30 October 2018, overview open questions, to answer on other

sheets
. Let
1 1 -1 -1 0 0
P=1|1 -1 0 and D = 01 0
1 0 1 0 0 1

Furthermore A = PDP~!. Answer the next questions without computing A! Explain your
answers!

(a) Find det(A).

(b) True or false: A=! = A?

(c) Let xo = (0,0,3)”. For k € N find A*xq.
(

d) Let
1 -1 1 1 00
R=| -1 -1 =2 and C=|0 -1 0
0o -1 2 0 01

Are A and RCR™! equal?
(e) Is A symmetric?
(f) Does there exist a matrix B such that A = BT B?
(g) Find Nul(A —31).

0 -1 —2 -3
4 3 4 3
4 1 0 -3
-1 -2 0 -1

and let W be the nullspace of A. Furthermore let

[ e
SO O
o o= O

o

—

—

w1 = Wy = and b=

O O = = =
= O O =
N = O W Ot

(a) Show that {w1,wa} is a basis for W. Do this without solving a system!!
(b) Find the orthogonal projection p of b on W and find the distance of b to W.
(c) Give a vector ¢, not equal to b or p, such that its orthogonal projection on W equals p.

. In R™ (with n > 2) are taken two vectors u and v such that u-v = 1. With these vectors we

define the linear transformation 7" : R — R™ by
T(x) =x—(u-x)v

(you don’t need to prove that T is linear).
(a) Is v een eigenvector of T'? If yes, also give the corresponding eigenvalue.
[REMARK: A is an eigenvalue of a linear transformation 7' : R" — R"™ if an eigenvector x # 0 exists, such
that T'(x) = Ax.]
(b) (¢) Show that the nonzero vectors orthogonal with u are eigenvectors of T'. Also give the
corresponding eigenvalue.
(i) Why is the dimension of the corresponding eigenspace equal to n — 17
(c) Show, by using (a) and (b), that T is diagonalizable.
[REMARK: a transformation 7' : R™ — R”™ is diagonalizable if and only if R™ has a basis containing only

eigenvectors of T]

SEE NEXT PAGE



