Faculteit EWI, DIAM

2628 CD Delft

Assignment exam Applied Functional Analysis January 9, 2020, 10.45 - 12.30

Solutions should be given in full detail. Results from the AFA Course Notes may be quoted without proof.

Grading: $\frac{1}{4} \cdot (10 + (5+5) + 10 + 10)$

All vector spaces are over the scalar field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

1. For $1 \leq p \leq \infty$ consider the right shift operator $T_r \in \mathcal{L}(\ell^p)$:

$$T_{\rm r}(a_1, a_2, a_3, \ldots) = (0, a_1, a_2, \ldots)$$

and the left shift operator $T_1 \in \mathcal{L}(\ell^p)$:

$$T_1(a_1, a_2, a_3, \ldots) = (a_2, a_3, a_4, \ldots).$$

Find $\sigma(T_r)$ and $\sigma(T_l)$.

Hint: Start with finding the eigenvalues of T_1 .

- 2. Let T be a bounded operator on a Hilbert space H.
 - (a) Prove that H admits an orthogonal direct sum decomposition

$$H = \operatorname{Ker} T^* \oplus \overline{\operatorname{Ran} T}.$$

(b) Show that if T is a contraction (i.e., $||T|| \leq 1$), then for each $x \in H$ we have Tx = x if and only if $T^*x = x$. Conclude that H admits an orthogonal direct sum decomposition

$$H = \operatorname{Ker} (I - T) \oplus \overline{\operatorname{Ran} (I - T)}.$$

Hint: If Tx = x, show that $T^*x - x \perp x$ and deduce that $T^*x = x$.

3. Let $1 \leq p \leq \infty$ be fixed and define $J: L^p(0,1) \to L^p(0,1)$ by

$$Jf(t) := \int_0^t f(s) \, ds, \qquad t \in [0, 1].$$

Show that J is bounded and that it maps $L^p(0,1)$ into $W^{1,p}(0,1)$ boundedly. What is the weak derivative of Jf?

4. Suppose $(S(t))_{t\geqslant 0}$ is a C_0 -semigroup on a Banach space X whose generator A is bounded. Show that $S(t)=e^{tA}$ for all $t\geqslant 0$ and $\lim_{t\downarrow 0}\|S(t)-I\|=0$.

-- The end --