

Exam Complex Function Theory (TW2040) Monday 1 July 2019; 13:30 - 16:30.

- 1. Complete the following definitions.
- (5) a. The principal part of a Laurent series is ...
- (5) b. A singularity of an analytic function is essential if ...
 - 2. Complete the following statements.
- (5) a. A singularity a of an analytic function f is essential if in the Laurent series $\sum_{n=-\infty}^{\infty} a_n (z-a)^n$ of f at a ...
- (5) b. The Minimum Modulus Principle for analytic functions states ...
 - 3. Consider the sine function $\sin z$ on the vertical strip $S = \{z : -\frac{\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}\}.$
- (5) a. Verify that $\sin z$ is injective on S.
- (5) b. Determine the image I of S under the map $\sin z$ and sketch the images of the horizontal lines $\operatorname{Im} z = -1$, $\operatorname{Im} z = 0$ and $\operatorname{Im} z = 2$, and the vertical lines $\operatorname{Re} z = -\frac{\pi}{4}$, $\operatorname{Re} z = 0$ and $\operatorname{Re} z = \frac{\pi}{3}$.

Let $arcsin : I \rightarrow S$ be the inverse of $sin : S \rightarrow I$

- (5) c. Use the inverse function theorem to show that arcsin is analytic on I and determine its derivative.
- (5) d. Find a formula for $\arcsin z$ in terms of the logarithm and the square root. Recalculate the derivative of $\arcsin z$.
- (5) 4. a. Let $\mathbb{E} = \{z : |z| < 1\}$ and let $f : \mathbb{E} \to \mathbb{C}$ be an analytic function such that $|f(z)| \le 2\sqrt{|z|}$ for all z. Prove that $|f(z)| \le 2|z|$ for all z.
- (5) b. Let $g: \mathbb{C} \to \mathbb{C}$ be an analytic function such that $|g(z)| \leq |z|^{\frac{3}{2}}$ for all z. Prove that g(z) = 0 for all z. Hint: Show first that $g(z) = \alpha + \beta z$ for some constants α and β .
- (15) 5. Evaluate

$$\int_0^{2\pi} \frac{\sin 2t}{5 - 3\cos t} \, \mathrm{d}t$$

using contour integration. Give all details.

- 6. Let $M = \left\{\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\right\}$; define $f : M \to \mathbb{C}$ by $f(\frac{1}{n}) = (-1)^n/n$, and let $\mathbb{E} = \{z : |z| < 1\}$ be the unit disc.
- (5) a. How many analytic functions $h: \mathbb{E} \to \mathbb{C}$ are there such that h(z) = f(z) for all $z \in M \cap \mathbb{E}$? Justify your answer.
- (5) b. How many analytic functions $h: \mathbb{E} \setminus \{0\} \to \mathbb{C}$ are there such that h(z) = f(z) for all $z \in M \cap \mathbb{E}$? Justify your answer.
- (15) 7. Evaluate the integral

$$\int_0^\infty \frac{\ln x}{x^2 + a^2} \, \mathrm{d}x$$

where a is a positive real number. Use contour integration and give all details.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.