Midterm Assignments Complex Function Theory, AM2040 May 2020

- You are allowed to use the book, your notes, etc.
- Every answer must be motivated by a calculation, a logical argumentation or a reference to the theory of Chapters 1,2,3 and 6.1. You cannot refer to results of exercises.
- If the answer is a complex number, write it in the form a + bi.
- All (sub)questions have equal weight for the grade.
- 1. Determine all solutions of the equation $e^{z^2} = 1$.
- 2. Compute the limit or show that the limit does not exist.
 - a) $\lim_{z \to \infty} e^{-(z+i)^2}$
 - b) $\lim_{z\to 0} z \operatorname{Log}(z-1)$.
- 3. Let $f(z) = z \operatorname{Re}(z)$. Determine all points $z_0 \in \mathbb{C}$ for which the complex derivative $f'(z_0)$ exists.
- 4. Let f be an analytic function on a region Ω satisfying

$$f(z) = u(x) + iv(y), \qquad z = x + iy \in \Omega,$$

where u and v are real functions. Show that f(z) = az + b for certain constants $a \in \mathbb{R}$ and $b \in \mathbb{C}$.

- 5. Calculate the following integrals.
 - a) $\int_{[z_0,z_1,z_2,z_3]} (z-1)^{\frac{1}{2}} dz$, where $z_0 = 1+i$, $z_1 = 2+3i$, $z_2 = 4-i$, $z_3 = 1-i$ and we use the principal branch of the power function.
 - b) $\int_{C_2(0)} \frac{\sin(z)}{4z^2+1} dz$, where $C_2(0)$ is positively oriented.
- 6. Find all entire functions f with the property $|f'(z)| \ge 1$ for all $z \in \mathbb{C}$. Hint: Liouville's theorem.
- 7. a) Let $m, n \in \mathbb{N}_0$ with $m \ge n$, and r > 0. Show that

$$\frac{1}{2\pi i} \int_{C_r(1)} \frac{z^m}{(z-1)^{n+1}} \, dz = \binom{m}{n},$$

where $C_r(1)$ has positive orientation.

b) Use part a to prove that

$$\binom{m}{n} \le \frac{m^m n^{-n}}{(m-n)^{m-n}}.$$