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This exam consists of 6 problems worth 90 pts in total.

Pass: 48 points or more, Fail: 47 points or less.

You may use course material (book, notes).

Please write your name and student number on every page that you hand in. Good luck!

Name: Student number:

Please write the following on the first page of your solutions:

“I declare that I have made this examination on my own, with no assistance and in accordance
with the TU Delft policies on plagiarism, cheating and fraud.”

[15pts] 1. In the figure, you see a graph G = (V, E) with edge costs ¢ : E — Z. Let M be the matroid on F in
which I C E is independent if and only if the subgraph (V,I) has at most one circuit.

[3pts] (a) Find a minimum cost base in this matroid. It suffices to indicate the base in the figure.

] (
[3pts] (b) Let F' = {e € E: c(e) > 0}. Determine the rank of F'.

)
)

[3pts] (¢) Give a subset C' C E that is a circuit in the matroid M.
)

[6pts] (d) Consider again the graph G. Call I C E good if |6(v) N I| < 2 for every node v € V. Let
I={ICE:Iisgood}.
Is (V,Z) a matroid? Prove your answer.

[15pts] 2. Let G = (V, E) be the complete graph on six nodes. Let P C R¥ be the TSP polytope and let Q be
the polytope given by

Q={reRf:2>0, 2(5w))=2 foralveV}.
[9pts] (a) Give a vector z € @ \ P and a hyperplane separating z from P.

[6pts] (b) Let x € R¥ be given by

B {0 it e € {{1,2},{2,3}, {3,4},{4,5}, {5,6}, {6, 1}}
° % otherwise

Show that z € P.
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[15pts] 3. Consider the network in the figure below, which consists of a directed graph, a demand function b on
the nodes, and costs ¢ on the edges. There are no upper bounds: u(a) = co for every edge a.
Use the network simplex method to solve the minimum cost flow problem, starting from the given
tree solution (thick arcs). The vertex A is the root.
In each iteration, give the tree, the associated flow, the vector y (the cost of the paths in the tree
from the root to the nodes) and the cost of the flow. You can use the worksheet if you wish.
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[15pts] 4. Consider the graph on 30 nodes below. Give a maximum size matching in this graph' and use the
Tutte-Berge formula to prove that it is indeed of maximum size.
Hint. You may want to use the set S consisting of the six black nodes.

Q O

[15pts] 5. Let G = (V, E) be an undirected graph. Recall that a cover is a subset C' of nodes such that every
edge has at least one endpoint in C. Let P C RV be the cover polytope:

P = conv.hull({1¢ : C C V is a cover in G}).
We also define the polytope @ by
Qz{xERV:OvaglforallveV, Xy + X, > 1 for all uv € E}.

[9pts] (a) Suppose that G is bipartite. Show that P = Q.
[3pts] (b) Suppose that G has an odd circuit through the nodes vy, vs, ..., vor+1 (in that order). Show

that

Ty + Lo, +"'+xv2k+1 >k+1
is a Gomory-Chvatal cutting plane for Q.

[3pts] (c) Suppose that G has five nodes a,b, ¢, d, e such that any two of these nodes are connected by an
edge (i.e. they form a clique). Give a cutting plane proof of

To+Thp+Te+xqg+xe >4
from the system describing Q.

You do not have to follow any particular algorithm, as long as the proof of optimality is correct.
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[15pts] 6. In the figure below, you see a network with costs associated to the edges. The problem is to find a
path from B to G of minimum total cost that traverses all edges at least once (if an edge is traversed
k times, then its cost is counted k times in the cost of the path).

[5pts] (a) Formulate this as a minimum cost T-join problem for some subset T' of the nodes. Explain why
solving the T-join problem solves the original problem.

[5pts] (b) Explain how this T-join problem can be reduced to a weighted matching problem. Also give the
corresponding weight function.

[5pts] (¢) Solve the matching problem and give a minimum cost path from B to G traversing every edge
of the graph at least once.

END OF EXaM




