Exam EE1510AM part I

Electricity and Magnetism

Wednesday, March 11, 2020, 9:00-11:00 a.m.

- This exam consists of 2 pages with 3 assignments.
- The total number of credits is 90.
- The number of credits rated for each assignment is listed to the left of each assignment.
- Start every assignment on a <u>new</u> sheet and write on every sheet of each worked out assignment your <u>name and student number</u>.

30 punten

Opgave 1

Consider 3 charges where the first charge $q_1 = Q$ is positioned at < 0, 4R, 0 >, the second charge $q_2 = -Q$ is positioned at < -2R, 0, 0 >, and the third charge $q_3 = 2Q$ is located at < 0, 0, 3R >.

a.) Determine the total electric field E in the point $\langle 4R, 0, 0 \rangle$.

In the configuration with the three charges we add a sphere with radius r = R with it's center located in the origin. The volume charge density in the sphere expressed in spherical coordinates is $\rho(r) = Q\sqrt{r}$.

- **b.**) Determine the total charge $Q_{\rm tot}$ of the sphere.
- c.) Assume that $\mathbf{E}_{\text{sphere}}$ is the electric field generated by the volume charge density ρ in the sphere. Determine the electric field $\mathbf{E}_{\text{sphere}}$ inside (r < R) and outside (r > R) the sphere with radius R.
- **d.**) Determine the total force \mathbf{F} on a charge Q located at the point <4R,0,0> due to the electric field \mathbf{E} excited by the three charges and the sphere.

35 punten

Opgave 2

Consider three concentric spheres, where the inner sphere has radius r=R, the middle sphere is a very thin perfectly conducting sphere with radius r=2R, and the outer sphere is also a very thin perfectly conducting sphere with radius r=3R. The inner sphere with radius r=R is a solid perfectly conducting sphere. The space between the inner sphere with radius r=R and the middle sphere with radius r=2R contains a volume charge density $\rho=k_0/r^2$. The outer sphere with radius r=3R contains a surface charge density $\sigma=k_1$ on the outside of the sphere, such that the whole configuration is neutral.

- a.) Determine the surface charge $\sigma = k_1$ expressed in terms of k_0 and R.
- **b.**) Determine the electric field **E** for all r, with $0 < r < \infty$.

We assume that the potential V(r) = 0, when $r \to \infty$.

- **c.**) Determine the potential V(r) outside the sphere with radius r=2R.
- **d.**) Determine the potential V(0) at r=0.
- e.) Give an expression for the capacitance C formed by the perfectly conducting spheres with radius r = 2R and r = 3R.

25 punten Opgave 3

Consider a very long cylinder with radius s = R that contains a volume charge density $\rho(s) = k_0 s/R$. The axis of the cylinder points in the z-direction and is positioned at < 6R, 0, z >. Apart from the cylinder we also have two point charges with each a charge Q, located at the position < 0, 0, R > and one at the position < 0, 0, -R >.

- **a.)** Determine the potential V(x,0,0) due to the point charges, when V=0 for $x\to\infty$.
- **b.)** Determine the electric field $\mathbf{E}_{\text{cylinder}}(x,0,z)$ that is generated by the volume charge density ρ inside the cylinder, when 0 < x < 5R and when 5R < x < 6R.
- c.) Find an expression for the charge Q, such that the total electric field $\mathbf{E}_{\text{total}}(3R,0,0) = \mathbf{0}$.

End of Exam