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1. For θ > 0, define the distribution function

Fθ(y) =

{
1− θ2/y2 y ≥ θ

0 y < θ

(a) Does the family of distributions {Fθ : θ > 0} form a location-scale family
associated with

F (x) =

{
1− 1/x2 x ≥ 1;

0 x < 1.

If yes, then specify the location parameter a and the scale parameter b.
If no, then explain why.

(b) Derive the α-quantile of FY , where 0 < α < 1.

2. Let X1, . . . , Xn be independent with a Bernoulli distribution with parameter
p ∈ [0, 1]. Consider the following estimator for the parameter p:

T =
n∑
i=1

ciXi

where c1, . . . , cn ∈ R are constants.

(a) Under what condition on c1, . . . , cn is T an unbiased estimator for p?

(b) Consider the case n = 2, with c1 and c2, such that T is unbiased. Deter-
mine for which c1, c2 ∈ R, the mean squared error is minimal.

3. Let X1, . . . , Xn be independent random variables with marginal probability
density

Pθ(Xi = x) = (x− 1)θ2(1− θ)x−2, x = 2, 3, . . . ,

where θ ∈ (0, 1).

(a) Determine the maximum likelihood estimator.

(b) As prior distribution we choose

π(θ) = 15θ2(1− θ), θ ∈ (0, 1).

Determine the Bayes estimator for θ with respect to this prior.

4. Let X1, . . . .Xn be independent random variables with distribution function

Fθ(x) =

{
1− (θ/x)2 x ≥ θ;

0 x < θ,

for some unknown parameter θ > 0. We want to test H0 : θ ≤ 1 against
H1 : θ > 1 with test statistic

T = X(1) = min{X1, . . . , Xn}

at significance level α0. We reject H0 : θ ≤ 1 for large values of X(1).



(a) Show that

Pθ(X(1) ≥ t) =

{
(θ/t)2n t ≥ θ;

1 t < θ,

and determine the p-value for an observation t = 1.1, when n = 20.

(b) Show that cα0 = α
−1/2n
0 .

(c) Give the definition of the power function for the test with critical region
given by parts (a)-(b) and determine the power at θ = 1.25, when n = 5
and α0 = 0.05.

5. Given is a dataset consisting of 9 observations with sample mean 6 and sample
variance 4. The observations are assumed to be realizations of independent
random variables with a normal distribution with unknown parameters µ ∈ R
and σ2 > 0. We test H0 : µ = 5 against H1 : µ 6= 5 with test statistic
T =

√
n(X − 5)/SX .

(a) Compute the p-value corresponding to the observed value for T and re-
port whether you reject the null hypothesis when we perform the test at
significance level 10%.

(b) Suppose the critical region is given by KT = (−∞,−3]∪[3,∞). Compute
the size of the test.


