DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

TEST LINEAR ALGEBRA 2 (TW2011) Friday January 26th 2018, 13:30-16:30

The final grade is calculated by computing the sum of all points (maximum 36), adding 4 extra points and dividing the result by 4.

Assignment 1 (3 pt.)

Give a reason why each of the following is <u>not</u> an inner product on the given vector spaces:

(a)
$$\langle (a,b)|(c,d)\rangle = ac - bd$$
 on \mathbb{R}^2 , (1 pt.)

(b)
$$\langle A|B\rangle = \text{Tr}(A+B) \text{ on } M_{2\times 2}(\mathbb{R}),$$
 (1 pt.)

(c)
$$\langle f(x)|g(x)\rangle = \int_0^1 f'(t)g(t)dt$$
 on $\mathbb{R}[t]$. (1 pt.)

Assignment 2 (7 pt.)

On $M_{2\times 2}(\mathbb{R})$ with Frobenius inner product $\langle A|B\rangle = \text{Tr}(AB^{\top})$, let

$$W = \operatorname{Span}\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\right).$$

(a) Compute
$$P_W\left(\begin{pmatrix}1&2\\2&1\end{pmatrix}\right). \tag{5 pt.}$$

(b) Give a basis for W^{\perp} . (2 pt.)

Assignment 3 (5 pt.)

- (a) Let $V = \mathbb{R}^n$ with a non-standard inner product and let L be the multiplication by a matrix A. Find the matrix of L^{\dagger} in terms of the matrix A and the metric matrix G. (2 pt.)
- (b) Let $V = \mathbb{R}^3$ and consider the non-standard inner product

$$\langle \mathbf{x} | \mathbf{y} \rangle = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3.$$

Compute the adjoint operator $L^{\dagger}(\mathbf{x})$ of

(3 pt.)

$$L(\mathbf{x}) = \begin{pmatrix} 3x_1 + x_2 \\ x_2 - x_3 \\ 5x_1 + x_3 \end{pmatrix}.$$

<u>Hint:</u> You can either use part (a) or compute the adjoint operator $L^{\dagger}(\mathbf{x})$ directly.

Assignment 4 (3 pt.)

Let V be a real inner product space. Show that the set of Hermitian operators on V is a subspace of $\mathcal{L}(V)$.

Assignment 5 (5 pt.)

- (a) Let $\mathcal{B} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ be an ordered basis for $V = \mathbb{R}^2$. Give the dual basis \mathcal{B}^* to \mathcal{B} . (2 pt.)
- (b) Let the linear mapping $L: \mathbb{R}_2[t] \to \mathbb{R}$ be defined by

$$L(\mathbf{p}(t)) = \mathbf{p}(0) + \mathbf{p}'(1) + \mathbf{p}''(2)$$

and let \mathcal{C} and \mathcal{D} be the standard ordered bases for $\mathbb{R}_2[t]$ and \mathbb{R} , respectively.

Compute the matrix representation

(3 pt.)

$$[L^*]_{\mathcal{C}^*\mathcal{D}^*}$$

of the dual mapping $L^*: \mathbb{R}^* \to \mathbb{R}_2[t]^*$, where \mathcal{C}^* and \mathcal{D}^* are the dual bases.

Hint: It is not necessary to compute the dual bases C^* and D^* .

Assignment 6 (4 pt.)

Consider the quadratic form

$$f(\mathbf{x}) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_2x_3$$
 for $\mathbf{x} = (x_1, x_2, x_3)^{\top} \in \mathbb{R}^3$.

- (a) What are the minimum and maximum values of $f(\mathbf{x})$ under the constraint that \mathbf{x} is a unit vector, i.e. $\|\mathbf{x}\| = 1$? (2 pt.)
- (b) For which unit vectors \mathbf{x} does $f(\mathbf{x})$ attain the minimum and maximum values? (2 pt.)

Assignment 7 (5 pt.)

- (a) Let A be an orthogonal matrix. Show that cond(A) = 1. (2 pt.)
- (b) Let U be an unitary 2×2 matrix. Compute (1 pt.)

$$\begin{pmatrix}
U^{\dagger} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
U & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}$$

(c) Let \mathcal{B} and \mathcal{D} be orthonormal bases for a finite dimensional complex inner product space V. Show that the change-of-basis matrix $P_{\mathcal{DB}}$ is unitary. (2 pt.)

Assignment 8 (4 pt.)

Let A be a real symmetric $n \times n$ matrix with n distinct real eigenvalues that are, without loss of generality, ordered as $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$. Then there exists an orthonormal basis of eigenvectors $\mathcal{B} = (\mathbf{b}_1, \dots \mathbf{b}_n)$. This you do <u>not</u> have to show!

- (a) Show that the matrix $B = A \lambda_1 |\mathbf{b}_1\rangle\langle\mathbf{b}_1|$ has the same eigenvectors and eigenvalues as A except that the largest eigenvalue λ_1 has been replaced by 0. (2 pt.)
- (b) Generalize the power method to compute all eigenvalue/eigenvector pairs of A. (2 pt.)