Exam Martingales, Brownian motion and stochastic calculus (WI4430).

Thursday 30th of January, 13:30-16:30. Rooms: LR/CZ: E-F-G.

- a) The exam has a theory part: questions 1 and 2, each on 10 points, and an exercise part (the remaining questions) on 20 points. The exercise part consists of 10 questions each on 2 points.
- b) No books, notes, calculators are allowed on the exam.
- c) The second reader of the exam is Dr. Ludolf Meester.
- 1. a) State and prove the martingale convergence theorem. If you prove the L^2 version, then prove also the Kolmogorov-Doob inequality (8 points).
 - b) Give an explicit example of a martingale that converges almost surely, and also in L^2 (2 points).
- 2. a) Prove the formula for the quadratic variation of Brownian motion (5 points).
 - b) Show that with probability equal to 1, there does not exist a (non-empty) open interval of time such that Brownian motion is monotone on that interval (3 points).
 - c) Give the definition of a Gaussian process (2 points).
- 3. Let $Y_i, i=1,2,\ldots$ denote mutually independent random variables taking the values ± 1 with probabilities $\mathbb{P}(Y_i=1)=p=1-\mathbb{P}(Y_i=-1)$. We assume p>1/2. We further denote $\mathscr{F}_n=\sigma\{Y_i,1\leq i\leq n\}$ the natural filtration, and $S_n=\sum_{i=1}^n Y_i$.
 - a) Compute, for $\lambda \in \mathbb{R}$ and $n \geq 2$ the conditional expectation

$$\mathbb{E}(e^{\lambda S_n}|\mathscr{F}_{n-1}).$$

- b) Show that for $\lambda = \log((1-p)/p), X_n = e^{\lambda S_n}$ is a martingale.
- c) Show that the martingale from item b) converges almost surely to zero, but not in L^1 .

- d) Let a < 0 < b denote two integers. Let $\tau = \inf\{n \ge 1 : S_n \in \{a,b\}\}$. By stopping appropriate martingale(s), compute the expectation $\mathbb{E}(\tau)$. In this item you are allowed to use martingale stopping without further justification.
- e) Show that

$$M_n := \sum_{i=1}^n (Y_i Y_{i-1} - (2p-1)Y_{i-1})$$

is a martingale (here we put $Y_0 = 0$). Does this martingale converge in L^2 ?

- 4. We denote by $\{W(t): t \geq 0\}$ Brownian motion, with associated natural filtration $\mathscr{F}_t = \sigma\{W(s): 0 \leq s \leq t\}$.
 - a) Compute the conditional expectation

$$\mathbb{E}(W(t)W(2t)W(3t)|\mathscr{F}_t).$$

- b) Show that $|(W(t))^2 t|^3$ is a sub-martingale (w.r.t. the natural filtration).
- c) By stopping an appropriate martingale, show that for a > 0, the stopping time $\tau_a = \inf\{t > 0 : W(t) = a\}$ satisfies

$$\mathbb{E}(e^{-\lambda \tau_a}) = e^{-\sqrt{2\lambda}a}$$

for all $\lambda \geq 0$. Justify properly the steps where you use martingale stopping.

- d) Show that for every t > 0, W(s) = 0 infinitely often in [0,t] with probability equal to 1. Hint: show that for all a > 0, $M_a = \max_{0 \le s \le a} W(s)$ is strictly positive with probability one, and by symmetry, $m_a = \min_{0 \le s \le a} W(s)$ is strictly negative. Conclude then that [0,a] contains s > 0 such that W(s) = 0.
- e) Show that the process defined by $Z(t) = e^{-t}W(e^{2t})$ is a Gaussian process, and compute its covariance function c(t,s) = cov(Z(t),Z(s)).