Exam Martingales, Brownian Motion, and Stochastic Processes (WI 4430).

12th of april 2016, 13:30-16:30.

No books or notes allowed.

Responsible of the course: Prof. F. Redig

Second reader exam: Dr. Ludolf Meester

a) The exam consists of two theory questions, each on 10 points, followed by exercises. The exercises consist of 10 small questions each on 2 points.

1 Theory Questions.

- 1) State and prove the martingale convergence theorem. If you give the L^2 proof, then prove also Kolmogorov's maximal inequality. If you give the proof based on upcrossings, then prove also the Doob's upcrossing inequality.
- 2) a) Give the definition of Brownian motion.
 - b) Derive the explicit formula for the probability density of the first hitting time of a > 0 for Brownian motion.

2 Exercises.

1) Let $X_i, i \in \mathbb{N}$ be independent random variables with

$$\mathbb{P}(X_i = 10) = 3/4 = 1 - \mathbb{P}(X_i = 1/10).$$

Consider

$$Y_n = \prod_{i=1}^n X_i$$

We denote by \mathscr{F}_n the filtration generated by $\{X_i, i \leq n\}$.

a) Compute $\mathbb{E}(Y_n|\mathscr{F}_{n-1})$ and conclude whether Y_n is a sub or supermartingale.

- b) Show that $Y_n^{1/n}$ converges almost surely to a constant and compute this constant.
- c) Determine the constant a such that $\log Y_n an$ is a martingale.
- d) Define the random time

$$\tau = \inf\{n \in \mathbb{N} : Y_n \ge 100\}$$

Show that τ is a stopping time which is finite almost surely.

- e) By stopping the martingale of item c), compute a lower bound for the expectation $\mathbb{E}(\tau)$ of the stopping time of item d).
- 2) The Ornstein Uhlenbeck process $\{x_t : t \geq 0\}$ with parameters $\mu \in \mathbb{R}$ and $\theta > 0$, starting at $x_0 \in \mathbb{R}$ is defined as follows

$$x_t = x_0 e^{-\theta t} + \mu (1 - e^{-\theta t}) + e^{-\theta t} \int_0^t e^{\theta s} dW_s$$
 (1)

- a) Compute the expectation $\mathbb{E}(x_t)$.
- b) Compute the covariance $cov(x_t, x_s)$, for 0 < s < t.
- c) Show that the law of the process $\{X_t, t \geq 0\}$ defined via

$$X_t = x_0 e^{-\theta t} + \mu (1 - e^{-\theta t}) + \frac{e^{-\theta t}}{\sqrt{2\theta}} W_{e^{2\theta t} - 1}$$

is the same as that of the Ornstein Uhlenbeck process $\{x_t, t \geq 0\}$ (hint: Use that both processes are Gaussian. Therefore it is sufficient to show that they have equal mean and covariance).

- d) Assume now that x_0 in (1) is chosen normally distributed with mean μ and variance $\frac{1}{2\theta}$ (and independent of the Brownian motion $\{W_t: t \geq 0\}$. Show then that at any later time t > 0, x_t is normally distributed with mean μ and variance $\frac{1}{2\theta}$.
- 3) Let $\{W_t : t \geq 0\}$ be a Brownian motion, and a > 0. Denote by $\mathscr{F}_t = \sigma\{W_s : 0 \leq s \leq t\}$ the associated filtration. Determine the function $g(s, W_s)$ such that

$$e^{aW_t - \frac{a^2}{2}t} = \int_0^t g(W_s, s)dW_s.$$