Exam Stochastic Processes WI 4202.

30 january 2015, 14:00-17:00 EWI lecture hall F/G.

No books or notes allowed.

Responsible of the course: Prof. F. Redig

Second reader exam: Dr. Ludolf Meester

a) The exam consists of two theory questions, each on 10 points, followed by exercises. The exercises consist of 10 small questions each on 2 points.

b) The end score is computed as explained on the blackboard page. Course grade is the final exam grade f or 0.6f + 0.4h (with h average homework grade), whichever is larger, provided  $f \geq 5$ .

\_\_\_\_\_\_

## 1 Theory Questions.

- 1) State and prove the martingale convergence theorem. If you give the  $L^2$  proof (the proof from the book), then prove also Kolmogorov's maximal inequality. If you give the proof based on upcrossings, then prove also the Doob's upcrossing inequality.
- 2) a) Give the definition of Brownian motion.
  - b) Derive the explicit formula for the probability density of the first hitting time of a>0 for Brownian motion.

## 2 Exercises.

1)  $\{X_i, i \in \mathbb{N}\}$  are independent and identically distributed random variables with a standard normal distribution (i.e., normally distributed with mean zero and variance 1). Furthermore, let  $\{a_n, n \in \mathbb{N}\}$  be sequence of real numbers. In the whole exercise you are allowed to use the expression for the moment generating function of a normal random variable Y with mean  $\mu$  and variance  $\sigma^2$ :

$$\mathbb{E}(e^{tY}) = e^{\mu t + \frac{\sigma^2 t^2}{2}}.$$

a) Compute the conditional expectation

$$\mathbb{E}\left(X_1 + X_2 + e^{X_1 + X_2 + X_3} \mid X_1, X_2\right)$$

b) Show that  $\{M_n, n \geq 1\}$  defined via

$$M_n = \sum_{i=1}^n a_i X_i$$

is a martingale.

c) Show that if  $\sum_{i=1}^{\infty} a_i^2 < \infty$  then the martingale of item b) satisfies the conditions of the martingale convergence theorem. Conclude that in that case the series

$$\sum_{i=1}^{\infty} a_i X_i$$

converges with probability 1.

d) Show that  $\{Z_n, n \geq 1\}$  defined via

$$Z_n = e^{\sum_{i=1}^n a_i X_i - \frac{1}{2} \sum_{i=1}^n a_i^2}$$

is a martingale. Does the martingale convergence theorem apply to this martingale?

e) Let  $Z_n$  be as in item d). Define n new random variables  $Y_1, \ldots, Y_n$  via

$$\mathbb{E}(f(Y_1,\ldots,Y_n)) = \mathbb{E}(Z_n f(X_1,\ldots,X_n))$$

for all f such that the expectations in the right hand side exist. Show that  $Y_1, \ldots, Y_n$  thus defined are independent and normally distributed with mean  $\mathbb{E}(Y_i) = a_i$  and variance  $Var(Y_i) = 1$ . Hint: it is sufficient to show that  $(Y_1, \ldots, Y_n)$  has the correct multivariate moment generating function, i.e., that

$$\mathbb{E}(e^{\sum_{i=1}^{n} t_i Y_i}) = e^{\sum_{i=1}^{n} \left(t_i a_i + \frac{t_i^2}{2}\right)}.$$

for all  $t_1, \ldots, t_n \in \mathbb{R}$ .

- 2) Let  $\{W_t, t \geq 0\}$  denote Brownian motion, and let  $\{N_t, t \geq 0\}$  denote rate one Poisson process (i.e.,  $N_t$  is Poisson with parameter t) which is furthermore independent from  $\{W_t, t \geq 0\}$ . You are allowed to use that for a Poisson random variable N with parameter  $\lambda$  one has  $\mathbb{E}(N) = \lambda$ ,  $Var(N) = \lambda$ ,  $\mathbb{E}(e^{sN}) = e^{\lambda(e^s 1)}$ ,  $s \in \mathbb{R}$ .
  - a) Show that

$$\mathbb{E}(W_{N_t}^2) = t$$

b) Show that  $\{Z_t, t \geq 0\}$  defined by

$$Z_t = W_t^2 - t$$

is a martingale.

c) Define the exit time of the interval [-a, a] by

$$\tau = \inf\{t \ge 0 : |W_t| > a\}$$

Show that  $\tau$  is a finite stopping time.

- d) Let  $\tau$  be as in item c). In this item you are allowed to use
  - 1) that  $\mathbb{E}(\tau)$  and  $\mathbb{E}(\tau^2)$  are both finite.
  - 2) Your are also allowed the martingale of item b) and
  - 3) also you are allowed to use that  $M_t = W_t^4 6tW_t^2 + 3t^2$  is a martingale (i.e., you do not have to prove this).

Show then that

$$\mathbb{E}(\tau) = a^2, \mathbb{E}(\tau^2) = \frac{5a^4}{3}$$

If you use the martingale stopping theorem, you should argue why you are allowed to use it.

e) In this item you are allowed to use that  $N_t - t$ , and  $(N_t - t)^2 - t$  are martingales. Define

$$\tau_n = \inf\{t \ge 0 : N_t \ge n\}$$

In this item, you do not have to verify the conditions of the martingale stopping theorem, i.e., you can assume that they are satisfied. Prove the following equalities using martingale stopping:

$$\mathbb{E}((\tau_n - n)^2) = \mathbb{E}(\tau_n) = n$$