Test 1 Mathematical Structures AM1010 Wednesday October 2, 2019, 9:00-10:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4.

1a Write down the truth table for the expression $(q \Rightarrow p) \land (\sim p)$.

3

Solution.

p q	$(q \Rightarrow p)$) \ ($\sim p)$
TT	Т	F	F
ΤF	T	F	F
FΤ	F	F	Τ
F F	Τ	Τ	\mathbf{T}

2

1b Give a statement R in terms of p and q, expressed without using \Rightarrow and \land such that $(q \Rightarrow p) \land (\sim p) \Leftrightarrow R$ is a tautology. For example R could be $(\sim q) \lor p$.

You don't have to explain your answer.

Solution. $\sim (p \vee q)$

The statement is true only when both p and q are false, so it is equivalent to $(\sim p) \land (\sim q)$. This is not an allowed answer due to the \land , but it is equivalent to $\sim (p \lor q)$.

This is not an anowed answer due to the \wedge , but it is equivalent to $\sim (p \vee q)$.

2a Give the definition of a partition of a set.

2

A partition of the set S is . . .

Solution. See Definition 2.2.12

a collection \mathcal{P} of subsets of S such that

- They are all non-empty $(\emptyset \notin \mathcal{P})$
- They are pairwise disjoint. $(A, B \in \mathcal{P} \text{ with } A \neq B, \text{ then } A \cap B = \emptyset)$
- They cover S (For each $x \in S$ there is $A \in \mathcal{P}$ with $x \in A$).

1

2b Give an example of a partition of the set $S = \{5, 8, 12\}$.

Solution. There are only 5 partitions of this set (you only needed to give one):

$$\{\{5,8,12\}\},\quad \{\{5,8\},\{12\}\},\quad \{\{5,12\},\{8\}\},\quad \{\{8,12\},\{5\}\},\quad \{\{5\},\{8\},\{12\}\}$$

3 Let $A, B,$ and C be sets. Show that $(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C$.			
Solution. Let $x \in (A \setminus C) \cup (B \setminus C)$. Then $x \in A \setminus C$ or $x \in B \setminus C$. Thus either $x \in A$ and $x \notin C$ or $x \in B$ and $x \not \land nC$. Thus in both cases $x \notin C$. Moreover in both cases $x \in A$ or $x \in B$, thus $x \in A \cup B$. We conclude that $x \in (A \cup B) \setminus C$. Thus the inclusion $(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C$ holds.			
Remark: In this case we even have equality. \Box			
4 We define a relation R on \mathbb{N} as nRm iff there are odd integers p and q such that $\frac{n}{m} = \frac{p}{q}$. You may assume that this relation is transitive. Remember to give a proof for all your answers.			
4a Is the relation R reflexive?			
Solution. Yes. Let $n \in \mathbb{N}$ be arbitrary. Then $\frac{n}{n} = \frac{1}{1}$ is a quotient of the desired form, so $1R1$ holds.			
4b Is the relation R symmetric?			
Solution. Yes. Let $n, m \in \mathbb{N}$ be arbitrary and suppose nRm holds. Then $\frac{n}{m} = \frac{p}{q}$ for some odd integers p and q , and thus $\frac{m}{n} = \frac{q}{p}$ can also be written as a quotient of two odd numbers. Thus mRn holds as well.			
4c Is the relation R an equivalence relation? If so, give a simple expression for the equivalence class E_1 .			
Solution. Yes, it is both reflexive, symmetric and transitive. The equivalence class E_1 is the set of elements equivalent to 1. Thus $xR1$ must hold and $x = \frac{p}{q}$ must be the quotient of two odd integers. This is true for odd all odd numbers (then $x = \frac{x}{1}$), and never for even numbers (as any fraction equal to $\frac{x}{1}$ has an even numerator). Thus E_1 is the set of all odd integers.			

in simplified form (the negation symbol itself is not allowed in your answer). You only have to give your answer, no explanation required.

Solution.

$$\exists x \in \mathbb{R} \, \forall y \in \mathbb{R} \, \exists z \in \mathbb{R} : z \ge y \land x > 2z.$$

4

3

4

4

5b Prove or disprove the statement from 5a.

Solution. We prove the statement of 5a.

Let $x \in \mathbb{R}$ be arbitrary and choose $y = \frac{x}{2}$. Now let $z \in \mathbb{R}$ be arbitrary again. Suppose $z \geq y$, then $z \geq \frac{x}{2}$, so $x \leq 2z$. Thus the implication holds as desired.

6a Show or disprove: $f: \mathbb{R} \to \mathbb{R}$ is increasing implies it is injective.

Note: f is increasing if $\forall x, y \in \mathbb{R} : x > y \Rightarrow f(x) > f(y)$.

Solution. We prove the statement is true.

Suppose f is increasing. Let $x, y \in \mathbb{R}$ be arbitrary. We prove $f(x) = f(y) \Rightarrow x = y$ using the contrapositive. Let $x \neq y$. Then either x > y or x < y. In the first case, x > y, we have f(x) > f(y), so $f(x) \neq f(y)$. The second case symmetrically shows f(x) < f(y) and again $f(x) \neq f(y)$. In both cases $f(x) \neq f(y)$, so we have proven $x \neq y \Rightarrow f(x) \neq f(y)$ as desired.

Alternative: We can also use contrapositivity in the definition of increasing to see that increasing implies that $\forall x, y \in \mathbb{R} : f(x) \leq f(y) \Rightarrow x \leq y$. Now suppose f is increasing. Let $x, y \in \mathbb{R}$ be arbitrary. Suppose f(x) = f(y). Then $f(x) \leq f(y)$ and $f(y) \leq f(x)$, so (by increasingness) both $x \leq y$ and $y \leq x$. Together this implies that x = y as desired.

6b Show or disprove: If $f: \mathbb{R} \to \mathbb{R}$ is injective, then it is either increasing or decreasing.

Solution. This is false. (Remark: For continuous functions it is true.)

A prove will (nearly) always use a counterexample. Make it as explicit as possible.

For example, take

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Then if f(x) = f(y) with $x, y \neq 0$ we have $\frac{1}{x} = \frac{1}{y}$, so x = y. Moreover if f(x) = f(0) = 0, then we must have x = 0 as well. Thus the function is injective.

Moreover $f(0) = 0 < f(2) = \frac{1}{2} < f(1) = 1$, so the function is neither increasing nor decreasing.

Examiner resposible: Fokko van de Bult Examination reviewer: Wolter Groenevelt