Test 1 Mathematical Structures AM1010 Wednesday October 2, 2019, 9:00-10:00 No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4. 1a Write down the truth table for the expression $(q \Rightarrow p) \land (\sim p)$. 3 Solution. | p q | $(q \Rightarrow p)$ |) \ (| $\sim p)$ | |-----|---------------------|-------|--------------| | TT | Т | F | F | | ΤF | T | F | F | | FΤ | F | F | Τ | | F F | Τ | Τ | \mathbf{T} | 2 1b Give a statement R in terms of p and q, expressed without using \Rightarrow and \land such that $(q \Rightarrow p) \land (\sim p) \Leftrightarrow R$ is a tautology. For example R could be $(\sim q) \lor p$. You don't have to explain your answer. Solution. $\sim (p \vee q)$ The statement is true only when both p and q are false, so it is equivalent to $(\sim p) \land (\sim q)$. This is not an allowed answer due to the \land , but it is equivalent to $\sim (p \lor q)$. This is not an anowed answer due to the \wedge , but it is equivalent to $\sim (p \vee q)$. 2a Give the definition of a partition of a set. 2 A partition of the set S is . . . Solution. See Definition 2.2.12 a collection \mathcal{P} of subsets of S such that - They are all non-empty $(\emptyset \notin \mathcal{P})$ - They are pairwise disjoint. $(A, B \in \mathcal{P} \text{ with } A \neq B, \text{ then } A \cap B = \emptyset)$ - They cover S (For each $x \in S$ there is $A \in \mathcal{P}$ with $x \in A$). 1 2b Give an example of a partition of the set $S = \{5, 8, 12\}$. Solution. There are only 5 partitions of this set (you only needed to give one): $$\{\{5,8,12\}\},\quad \{\{5,8\},\{12\}\},\quad \{\{5,12\},\{8\}\},\quad \{\{8,12\},\{5\}\},\quad \{\{5\},\{8\},\{12\}\}$$ | 3 Let $A, B,$ and C be sets. Show that $(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C$. | | | | |--|--|--|--| | Solution. Let $x \in (A \setminus C) \cup (B \setminus C)$. Then $x \in A \setminus C$ or $x \in B \setminus C$. Thus either $x \in A$ and $x \notin C$ or $x \in B$ and $x \not \land nC$. Thus in both cases $x \notin C$. Moreover in both cases $x \in A$ or $x \in B$, thus $x \in A \cup B$. We conclude that $x \in (A \cup B) \setminus C$. Thus the inclusion $(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C$ holds. | | | | | Remark: In this case we even have equality. \Box | | | | | 4 We define a relation R on \mathbb{N} as nRm iff there are odd integers p and q such that $\frac{n}{m} = \frac{p}{q}$. You may assume that this relation is transitive. Remember to give a proof for all your answers. | | | | | 4a Is the relation R reflexive? | | | | | Solution. Yes. Let $n \in \mathbb{N}$ be arbitrary. Then $\frac{n}{n} = \frac{1}{1}$ is a quotient of the desired form, so $1R1$ holds. | | | | | 4b Is the relation R symmetric? | | | | | Solution. Yes. Let $n, m \in \mathbb{N}$ be arbitrary and suppose nRm holds. Then $\frac{n}{m} = \frac{p}{q}$ for some odd integers p and q , and thus $\frac{m}{n} = \frac{q}{p}$ can also be written as a quotient of two odd numbers. Thus mRn holds as well. | | | | | 4c Is the relation R an equivalence relation? If so, give a simple expression for the equivalence class E_1 . | | | | | Solution. Yes, it is both reflexive, symmetric and transitive. The equivalence class E_1 is the set of elements equivalent to 1. Thus $xR1$ must hold and $x = \frac{p}{q}$ must be the quotient of two odd integers. This is true for odd all odd numbers (then $x = \frac{x}{1}$), and never for even numbers (as any fraction equal to $\frac{x}{1}$ has an even numerator). Thus E_1 is the set of all odd integers. | | | | | | | | | in simplified form (the negation symbol itself is not allowed in your answer). You only have to give your answer, no explanation required. Solution. $$\exists x \in \mathbb{R} \, \forall y \in \mathbb{R} \, \exists z \in \mathbb{R} : z \ge y \land x > 2z.$$ 4 3 4 4 5b Prove or disprove the statement from 5a. Solution. We prove the statement of 5a. Let $x \in \mathbb{R}$ be arbitrary and choose $y = \frac{x}{2}$. Now let $z \in \mathbb{R}$ be arbitrary again. Suppose $z \geq y$, then $z \geq \frac{x}{2}$, so $x \leq 2z$. Thus the implication holds as desired. 6a Show or disprove: $f: \mathbb{R} \to \mathbb{R}$ is increasing implies it is injective. Note: f is increasing if $\forall x, y \in \mathbb{R} : x > y \Rightarrow f(x) > f(y)$. Solution. We prove the statement is true. Suppose f is increasing. Let $x, y \in \mathbb{R}$ be arbitrary. We prove $f(x) = f(y) \Rightarrow x = y$ using the contrapositive. Let $x \neq y$. Then either x > y or x < y. In the first case, x > y, we have f(x) > f(y), so $f(x) \neq f(y)$. The second case symmetrically shows f(x) < f(y) and again $f(x) \neq f(y)$. In both cases $f(x) \neq f(y)$, so we have proven $x \neq y \Rightarrow f(x) \neq f(y)$ as desired. **Alternative:** We can also use contrapositivity in the definition of increasing to see that increasing implies that $\forall x, y \in \mathbb{R} : f(x) \leq f(y) \Rightarrow x \leq y$. Now suppose f is increasing. Let $x, y \in \mathbb{R}$ be arbitrary. Suppose f(x) = f(y). Then $f(x) \leq f(y)$ and $f(y) \leq f(x)$, so (by increasingness) both $x \leq y$ and $y \leq x$. Together this implies that x = y as desired. 6b Show or disprove: If $f: \mathbb{R} \to \mathbb{R}$ is injective, then it is either increasing or decreasing. Solution. This is false. (Remark: For continuous functions it is true.) A prove will (nearly) always use a counterexample. Make it as explicit as possible. For example, take $$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$ Then if f(x) = f(y) with $x, y \neq 0$ we have $\frac{1}{x} = \frac{1}{y}$, so x = y. Moreover if f(x) = f(0) = 0, then we must have x = 0 as well. Thus the function is injective. Moreover $f(0) = 0 < f(2) = \frac{1}{2} < f(1) = 1$, so the function is neither increasing nor decreasing. Examiner resposible: Fokko van de Bult Examination reviewer: Wolter Groenevelt