Test 1 Mathematical Structures AM1010 Wednesday October 2, 2019, 9:00-10:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4.

Exercise	continued (extra space)

b Give a statement R in terms of p and q , expressed without using \Rightarrow and \land such that $(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is	a Write down the truth table for the expression $(q \Rightarrow p) \land (\sim p)$.	
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
$(q\Rightarrow p)\land (\sim p)\Leftrightarrow R$ is a tautology. For example R could be $(\sim q)\lor p$. You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		
You don't have to explain your answer. a Give the definition of a partition of a set. A partition of the set S is		at.
a Give the definition of a partition of a set. A partition of the set S is		
A partition of the set S is	To a doir of liant to our plant your answer.	
A partition of the set S is		
A partition of the set S is		
A partition of the set S is		
A partition of the set S is		
A partition of the set S is		
A partition of the set S is		
	a Give the definition of a partition of a set.	
o Give an example of a partition of the set $S = \{5, 8, 12\}$.	A partition of the set S is	
o Give an example of a partition of the set $S = \{5, 8, 12\}$.		
o Give an example of a partition of the set $S = \{5, 8, 12\}$.		
Give an example of a partition of the set $S = \{5, 8, 12\}$.		-
o Give an example of a partition of the set $S = \{5, 8, 12\}$.		-
o Give an example of a partition of the set $S = \{5, 8, 12\}$.		
Give an example of a partition of the set $S = \{5, 8, 12\}$.		
o Give an example of a partition of the set $S = \{5, 8, 12\}$.		
b Give an example of a partition of the set $S = \{5, 8, 12\}$.		
	b Give an example of a partition of the set $S = \{5, 8, 12\}$.	
		-

4a	Is the relation R reflexive?
4b	Is the relation R symmetric?
4c	Is the relation R an equivalence relation? If so, give a simple expression for th
10	equivalence class E_1 .

3

$\forall x \in \mathbb{R} \exists y \in \mathbb{R} \forall z \in \mathbb{R} : z \ge y \Rightarrow x \le 2z$
in simplified form (the negation symbol itself is not allowed in your answer). You only have to give your answer, no explanation required.
5b Prove or disprove the statement from 5a.

	reasing if $\forall x, y$		/ J	(<i>v</i>)		
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	sing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or deci	easing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	sing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or decr	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	sing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	using or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or deci	reasing.
Show or dispr	ove: If $f: \mathbb{R}$ -	$ ightarrow \mathbb{R}$ is inject	ive, then it is	either increa	asing or deci	reasing.

Examiner resposible: Fokko van de Bult Examination reviewer: Wolter Groenevelt