Midterm Mathematical Structures AM1010 Monday November 4, 2019, 9:00-11:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+6)/6.

Exercise	continued (extra space)

Exercise 1 is at the bottom of this page!

Exerci	se	continued (extra space)
() ==		
		atement below using quantifiers, logical operators, equations, and exch as $a \in \mathbb{R}$.
	There exist	as an integer x such that xy is an integer multiple of 7 for all rational numbers y .
D	on't use wo	ords or the divisor symbol $n \mid m$. No explanation necessary.
		the negation of the above statement (again using quantifiers, logical quations, and expressions such as $a \in \mathbb{R}$). No explanation necessary.

2. Let $f:A\to B$ be a function. Suppose $C\subseteq A$ and $D\subseteq B$. Show that

$$f(C) \setminus D = f(C \setminus f^{-1}(D))$$

using the definitions of image and pre-image.

(a) is this relation	reflexive (for any function f)	. Prove or disprove.	
(b) Is this relation	symmetric (for any function	f)? Prove or disprove.	
(c) Is this relation	transitive (for any function f	?)? Prove or disprove.	
	ple of a function f for which this is the case.	this relation is an equivalence	e relatio

4.	Suppose $f:[0,1]\to[0,1]$ is increasing and $f(0)=0,f(1)=1$. Prove or disprove: f is	4
	surjective.	
	Note: f is increasing if $\forall x, y \in \mathbb{R} : x > y \Rightarrow f(x) > f(y)$.	

- 5. In this exercise you only have to provide the final answer, no explanation necessary.
 - (a) Write $\bigcap_{n\in\mathbb{N}}(2-\frac{1}{n},4-\frac{1}{n})$ as a finite union of intervals and finite sets.

2

2

(b) Write $\bigcup_{n\in\mathbb{N}} (2-\frac{1}{n},4-\frac{1}{n})$ as a finite union of intervals and finite sets.

. Prove using induction that $2n^3 - 3n^2 + n$ is a multiple of 6 for all $n \in \mathbb{N}$.

	Complete the definition of $\lim s_n = s$ for a real number s.
	The sequence (s_n) converges to s when
_	
	Prove using the definition of infinite limits that $\lim \frac{n^2+5}{n+3} = \infty$.
•	Trove using the definition of immite times that $\lim_{n\to 3} -\infty$.
_	

(a) $(s_n t_n)$ is diverg	gent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		
(b) $(s_n + t_n)$ is div	vergent.		

Examiner resposible: Fokko van de Bult

Examination reviewer: Wolter Groenevelt and Anna Geyer