
Test 1 Mathematical Structures AM1010
Friday December 13, 2019, 9:00-10:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4.

1 Let S = {n+2
n

: n ∈ N}. Determine inf(S) and sup(S). Prove your answer in detail. 5

Solution. inf(S) = 1. Indeed n+2
n

= 1 + 2
n
> 1 for all n, so 1 is a lower bound. Now

suppose ε > 0. Then, by the Archimedean property, there is an n ∈ N such that 1
n
< ε

2
.

Therefore 1 + ε > 1 + 2
n

and 1 + ε is not an lower bound to S. As any number greater
than 1 is not a lower bound, whereas 1 is, we conclude that 1 is indeed the infimum of S.

Alternative: Notice that n+2
n

is a decreasing sequence with lim n+2
n

= lim 1 + 2
n

= 1.
Therefore all elements in the set S are bigger than 1, and numbers very close to 1 occur.
Thus inf(S) = 1.

sup(S) = 3. Indeed for n = 1 we have 3 = 1+2
1
∈ S. Moreover as n ≥ 1 for natural

numbers, n+2
n

= 1 + 2
n
≤ 1 + 2

1
= 3. We conclude that 3 is an upper bound which is in

the set S, so 3 is a maximum. Therefore 3 is also the supremum of S.

2a Consider the sequence defined recursively as an+1 =
√

3an + 1 and a1 = 1. You may 9
assume that the sequence is monotone.

Show that the sequence (an) converges. (if you use induction you need to write down a
perfect induction proof).

Solution. We first show using induction that 0 < an < 8 for all n ∈ N. Indeed for
n = 1 we have 0 < 1 = a1 < 8. Now suppose 0 < ak < 8. Then ak+1 =

√
3ak + 1 >√

3 · 0 + 1 = 1 > 0. And ak+1 =
√

3ak + 1 <
√

3 · 8 + 1 = 5 < 8. Thus also 0 < ak+1 < 8.
By induction we find that 0 < an < 8 for all n ∈ N. In particular (an) is bounded.

By the monotone convergence theorem, the monotone, bounded sequence (an) thus con-
verges.

2b Determine the limit a = lim an (for this part you can assume (an) converges). 4

Solution. Knowing that (an) converges we find that

a = lim an = lim an+1 = lim
√

3an + 1 =
√

3a+ 1,

as Example 4.2.6 shows that lim
√
tn =

√
lim tn, which we can apply for tn = 3an + 1.

Squaring this equation and rearranging gives a2 − 3a − 1 = 0, so a = 3
2
± 1

2

√
9 + 4 =

3
2
± 1

2

√
13. As an > 0 for all n, we need to take the positive solution a = 3

2
+ 1

2

√
13.

3 Formulate the completeness axiom for the real numbers. 2

Solution. Any non-empty, bounded subset of the real numbers has a supremum.

4 What is the name of the axiom which says that ∀x, y : x+ y = y + x? 2



Solution. Commutativity.

5 Show that the sets S = (0,∞) are T = [0,∞) equinumerous by giving an explicit bijection. 4
You don’t have to show it is truly a bijection.

Solution. They are equinumerous. We define the following bijection f : S → T

f(s) =

{
s− 1 s ∈ N
s s 6∈ N

This function clearly maps integers to integers and non-integers to non-integers.

We now show the function is injective. If f(s1) = f(s2), then either s1 and s2 are both
integers or both non-integers. In the first case we have s1 = f(s1) + 1 = f(s2) + 1 = s2,
in the second case s1 = f(s1) = f(s2) = s2. Either way, s1 = s2, thus the function is
injective.

Now we show the function is surjective. Let t ∈ T . If t is an integer we have t + 1 ∈ S,
and f(t + 1) = t. If t is not an integer, t 6= 0, so t ∈ S. And we have f(t) = t. Either
way t is in the image of f , and f is surjective.

6 Let (sn) be a bounded sequence. Let M be such that |sn| < M for all n, and write
lim sup sn = s.

6a Give an example of a bounded sequence (sn) such that lim sup(s2n) 6= s2. Show this 4
is the case by giving sn, s and lim sup(s2n). You don’t have to give a proof that the
lim sup’s are what you say they are.

Solution. Take sn = (−1)n − 1, so (sn) = (0,−2, 0,−2, 0,−2, 0,−2, . . .). Then s =
lim sup sn = 0, whereas lim sup(s2n) = 4 6= 02.

6b Suppose sn > 0. Show that now lim sup(s2n) = s2. 6

Solution. We show this using the characterization of Theorem 4.4.11.

Let ε > 0. As lim sup sn = s there is N such that for all n > N we have sn−s < ε
2M

.
Then let n > N be arbitrary. Then

s2n − s2 = (sn − s)(sn + s) <
ε

2M
· (M +M) = ε.

Here we use that s ≤ M if sn < M for all n. Also we use that sn + s > 0 to ensure
(sn−s)(sn+s) can’t become the product of two negative numbers, which makes the
inequality valid.

Now for the second half, let ε > 0 and let N be arbitrary. Then there is an n > N
such that sn > s− ε

2M
. But then

s2n > (s− ε

2M
)2 = s2 − 2s

2M
ε+

ε2

4M2
> s2 − ε.

Here we again use that s ≤ M . This argument fails if s − ε
2M

< 0, as then the
inequality can not be squared. However when this happens we have ε > 2Ms > s2,
so s2n > 0 > s2 − ε as well.



Alternatively for the second part:

s2n − s2 = (sn − s)(sn + s) > − ε

2M
· (M +M) = −ε.

In this case, as − ε
2M

< 0 and M +M > 0 the inequality works in this form.

Remark: Observe M > |sn| ≥ 0, so we don’t divide our ε by 0. Choosing s− ε
2s

in
the second part does risk doing this.

Full Alternative Solution: We first show the following lemma

Lemma 1. Let S ⊆ [0,∞) be a non-empty bounded set of positive numbers. Define
T = {s2 : s ∈ S}. Then sup(T ) = sup(S)2.

Proof. Indeed suppose t ∈ T . Then there is an s ∈ S with t = s2. As s ≤ sup(S)
we find t ≤ sup(S)2 (using that s ≥ 0), so sup(S)2 is an upper bound to T .

Now let x < sup(S)2. If x < 0, then any t ∈ T is bigger than x, so in that case x
is not an upper bound. Otherwise

√
x exists, and

√
x < sup(S) (using sup(S) ≥ 0).

So there exists s ∈ S with s >
√
x, and thus s2 > x. As s2 ∈ T we conclude x is not

an upper bound to T in this case either.

Thus we find that sup(S)2 is the lowest upper bound to T .

Using the lemma we see that sup{s2n : n > N} = (sup{sn : n > N})2, and
therefore

lim sup s2n = lim
N→∞

sup{s2n : n > N} = lim
N→∞

(sup{sn : n > N})2

= ( lim
N→∞

sup{sn : n > N})2 = (lim sup sn)2

Remark 2: If you want to prove this using the definition of limit superior from the
book you can’t just use the following argument:

“For any convergent subsequence (snk
) we have lim(s2nk

) = (lim snk
)2, so the set S2

of subsequential limits of (s2n) equals the set of squares of the set S1 of subsequential
limits of (sn) itself: S2 = {x2 : x ∈ S1}. ”

Indeed, you would need to show that there are no divergent subsequences (snk
), for

which (s2nk
) does converge. If there were, one of these might have a higher limit than

any square of an element in S1. Considering this, an attempted proof along these
lines is worth 0 points.

Note that such subsequences can exist if we don’t insist on sn > 0. Indeed if
sn = (−1)n the entire sequence (which is a subsequence of itself) diverges, but the
sequence (s2n) does converge.
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