Test 2 Mathematical Structures AM1010 Friday December 13, 2019, 9:00-10:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+4)/4.

Exercise	continued (extra space)

Exercis	e	continued (extra space)

	$\frac{n+2}{n}$: $n \in \mathbb{N}$ }. D	$\frac{\text{etermine inf}(S)}{$	and $\sup(S)$.	Prove your ans	swer in detail
$\inf(S) =$					
Explanation	on for inf:				
Г					
$\sup(S) = $					
Explanation	on for sup:				

2a Show that	the sequence (a_n)) converges.	(If you use inc	luction you nee	d to write dow
a proper in	aduction proof.)				
2b Determine	the limit $a = \lim_{n \to \infty} a_n$	a_n (for this	s part you can	assume (a_n) co	onverges).

(Give the one from	n this course, i	not the one f	rom AM2090	ว: Keal analy	ysis.)	
What is the name	of the axiom	which savs th	hat $\forall x, y \in \mathbb{R}$	$\mathbb{R}: x + y = y$	+x?	
			, 9 -		,	
Show that the sets	$S = (0, \infty)$ are	$e T = [0, \infty)$	equinumerou	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ by a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ ly a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ by a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ by a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ ly a bijection	equinumerou 1.	as by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$e T = [0, \infty)$ by a bijection	equinumerou 1.	ıs by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou 1.	is by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true	$eT = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	as by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$eT = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	as by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	as by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$eT = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	as by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$e T = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.
Show that the sets You don't have to	$S = (0, \infty)$ are show it is true.	$eT = [0, \infty)$ ly a bijection	equinumerou	s by giving a	n explicit	bijection.

	a bounded sequence: That is, there exists M such that $ s_n < M$ for all n rite $\limsup s_n = s$.
this is	in example of a bounded sequence (s_n) such that $\limsup(s_n^2) \neq s^2$. Show that the case by giving s_n , s and $\limsup(s_n^2)$. You don't have to give a proof that a sup's are what you say they are.
$s_n =$	
$s = \lim_{n \to \infty} s_n$	$a \sup s_n = $
\limsup	$p(s_n^2) =$
6b Suppo	se $s_n > 0$. Show that now $\limsup(s_n^2) = s^2$.

4

6

Examiner responsible: Fokko van de Bult

Examination reviewer: Wolter Groenevelt, Rik Versendaal, Anna Geyer.