Resit Exam Mathematical Structures TW1010 Thursday April 18, 2019, 9:00-12:00

4

8

No calculators allowed. Write the solutions in the fields provided. The grade is (score+8)/8.

L	Determine using a truth table whether or not $(p \land q) \Rightarrow (p \lor q)$ is a tautology.
	The truth table is given by
	The truth table is given by
	Solution.
	$egin{array}{c cccc} p & q & p \wedge q & \Rightarrow & p ee q \ T & T & T & T & T \end{array}$
	$egin{array}{c cccc} T & F & F & T & T \ F & T & T \ \end{array}$
	$egin{array}{c ccccc} F & T & F & T & T \ F & F & T & F \ \end{array}$
	The statement is a tautology, since the column under \Rightarrow , determining the validity of the full statement only displays T 's.
2	Give a relation on \mathbb{Q} which is transitive, reflexive, but not symmetric.
	The relation R is defined as xRy holds whenever
	Solution. $x \leq y$.
	Of course there are many more examples, but this is a very well-known one. \Box
	The relation R is reflexive as
	Solution. For any $x \in \mathbb{Q}$ we have $x \leq x$, so xRx holds.
	The relation R is not symmetric as
	Solution. Take $x = 1$ and $y = 2$. Then $1 \le 2$, so $1R2$ holds, but not $2 \le 1$, so $2R1$ does
	not hold. \Box
	The relation R is transitive as
	The relation it is transitive as
	Solution. Suppose xRy and yRz hold, so both $x \leq y$ and $y \leq z$. Then $x \leq z$, thus xRz
	holds. \Box

3	Find the error in the following proof.	4
	Theorem: For any function $f: \mathbb{R} \to \mathbb{R}$ we have $f(A \setminus C) \subseteq f(A) \setminus f(C)$.	
	Proof:	
	1. Suppose $y \in f(A \setminus C)$.	
	2. Then there exists $x \in A \setminus C$ with $f(x) = y$.	
	3. Therefore $x \in A$ and $x \notin C$.	
	4. As $x \in A$ we have $f(x) \in f(A)$.	
	5. As $x \notin C$ we have $f(x) \notin f(C)$.	
	6. Hence $f(x) \in f(A) \setminus f(C)$.	
	7. As $y = f(x)$ we conclude $y \in f(A) \setminus f(C)$.	
	8. As we have shown for all y that $y \in f(A \setminus C) \Rightarrow y \in f(A) \setminus f(C)$ we have $f(A \setminus C) \subseteq f(A) \setminus f(C)$.	
	The error in the proof occurs at line number 5. This statement is wrong as	
	Solution. A counterexample is given by $f(x) = x^2$ and $C = \{2\}$, and $x = -2$. Then $x \notin C$, but $f(x) = 4 \in \{4\} = f(C)$.	
	Indeed this goes wrong for non-injective functions. $\hfill\Box$	
4	Formulate the completeness axiom for the real numbers.	2
	Solution. Any non-empty bounded subset of the real numbers has a supremum. $\hfill\Box$	

4

6

$$\sup(f(A)) \le f(\inf(A)).$$

Solution. Take $y \in f(A)$, then there exists $a \in A$ with f(a) = y. As $a \ge \inf(A)$ and f is decreasing, we find that $y = f(a) \le f(\inf(A))$. Therefore $f(\inf(A))$ is an upper bound to f(A), and we conclude that $\sup(f(A)) \le f(\inf(A))$.

5b Give a decreasing function $f: \mathbb{R} \to \mathbb{R}$ and a set $A \subseteq \mathbb{R}$ for which the strict inequality $\sup(f(A)) < f(\inf(A))$ holds; and show that your example works.

Solution. Take

$$f(x) = \begin{cases} 1 & x \le 0, \\ 0 & x > 0. \end{cases}$$

and A = (0,1). Then $f(A) = \{0\}$, while $\inf(A) = 0$, so $f(\inf(A)) = 1$. In particular $\sup(f(A)) = \sup(\{0\}) = 0 \le 1 = f(\inf(A))$.

As an example you can take any decreasing function with a jump at $\inf(A)$, for which the value at the jump is not the right-limit.

6 Show that \mathbb{Q} is dense in \mathbb{R} . That is, show that if $x, y \in \mathbb{R}$ with x < y, then there is a rational number $q \in \mathbb{Q}$ with x < q < y.

Solution. This is Theorem 3.3.13 from the book.

Let us first assume x>0. By the Archimedean property there is an $n\in\mathbb{N}$ for which $\frac{1}{n}< y-x$. Consider the set $S=\{m\in\mathbb{N}: m>nx\}$, this is non-empty (by the Archimedean property again), so by wel-ordering it has a minimal element M. Then we find $x<\frac{M}{n}$ and $\frac{M-1}{n}< x$ (as otherwise either $M-1\in S$ contradicting that M is minimal, or M=1 and we would have $x\leq 0$ contradicting x>0). But then $y=x+(y-x)>\frac{M-1}{n}+\frac{1}{n}=\frac{M}{n}$. Thus $q=\frac{M}{n}$ satisfies the conditions of the statement.

In the case $x \leq 0$ there is an positive integer k with k > -x, so 0 < x + k < y + k, and we find that there is a $q' \in \mathbb{Q}$ with x + k < q' < y + k. But then $q' - k \in \mathbb{Q}$ satisfies x < q < y as desired.

7 The sequence (a_n) is defined recursively as $a_{n+1} = \sqrt{8 + \frac{1}{2}a_n a_{n-1}}$, starting with $a_1 = 1$ and $a_2 = 2$.

7

6

2

7a Use induction to prove that (a_n) is increasing.

Hint: Use the statement $P(n): a_n \leq a_{n+1} \leq a_{n+2}$.

Solution. We will prove by induction that $a_n \leq a_{n+1} \leq a_{n+2}$ for all $n \in \mathbb{N}$.

We calculate $a_3 = \sqrt{8 + \frac{1}{2} \cdot 1 \cdot 2} = \sqrt{9} = 3$, so $a_1 = 1 \le a_2 = 2 \le a_3 = 3$. Therefore the base condition holds.

Observe that $a_n \ge 0$ for all n, as this is true for n = 1, 2 and for $n \ge 3$ the a_n is defined as the (positive) square root of some number.

Now assume $a_k \leq a_{k+1} \leq a_{k+2}$ for some k. Then we have

$$a_{k+3} = \sqrt{8 + \frac{1}{2}a_{k+1}a_{k+2}} \ge \sqrt{8 + \frac{1}{2}a_{k+1}a_k} = a_{k+2}$$

where we use that $a_{k+2} \ge a_k$ and that $a_{k+1} \ge 0$. As the induction hypothesis already gives $a_{k+1} \le a_{k+2}$ we can conclude that $a_{k+1} \le a_{k+2} \le a_{k+3}$ holds.

By induction we see that for all n we have $a_n \leq a_{n+1} \leq a_{n+2}$ and thus that the sequence increases.

Note that you can alternatively set up an induction proof following exercise 3.1.27. \square

7b We still use the sequence (a_n) defined by $a_{n+1} = \sqrt{8 + \frac{1}{2}a_n a_{n-1}}$, $a_1 = 1$, and $a_2 = 2$.

Show that (a_n) converges.

Solution. We show that the sequence is bounded above by 10 using induction. The induction hypothesis is $a_n \leq 10 \wedge a_{n+1} \leq 10$.

Indeed $a_1 \leq 10$ and $a_2 \leq 10$. Moreover if for some k we have $a_k, a_{k+1} \leq 10$, then

$$a_{k+2} = \sqrt{8 + \frac{1}{2}a_k a_{k+1}} \le \sqrt{8 + \frac{1}{2} \cdot 10 \cdot 10} = \sqrt{58} \le 10.$$

(Note that we again use that $a_k, a_{k+1} \ge 0$.) By induction we find that the sequence is bounded by 10.

By the monotone convergence theorem we can now conclude that this increasing bounded sequence converges. \Box

7c Determine the limit $\lim a_n = a$.

Solution. We have

$$a = \lim a_{n+1} = \lim \sqrt{8 + \frac{1}{2}a_n a_{n-1}} = \sqrt{8 + \frac{1}{2}a \cdot a} = \sqrt{8 + \frac{1}{2}a^2}.$$

Here we use the rules of calculations for limits (including that we can move a limit through a square root, conform Example 4.2.6). Squaring this equation gives $a^2 = 8 + \frac{1}{2}a^2$, so $\frac{1}{2}a^2 = 8$, so $a^2 = 16$ and $a = \pm 4$. As we already noted that $a_n \ge 0$ for all n, the limit must be positive as well, and a = 4 is the only viable option.

6

6

Solution. Let $\epsilon > 0$. Then there is an N such that for all n, m > N we have $|s_n - s_m| < \epsilon^2$. Then for this same N we have for all n, m > N that

$$|f(s_n) - f(s_m)| \le \sqrt{|s_n - s_m|} < \sqrt{\epsilon^2} = \epsilon,$$

thus the sequence $(f(s_n))$ is also Cauchy.

The axioms of an ordered field as applied to \mathbb{R} are

A1 $\forall x, y \in \mathbb{R} : x + y \in \mathbb{R}$ and $x = w \land y = z \Rightarrow x + y = w + z$;

A2 $\forall x, y \in \mathbb{R} : x + y = y + x;$

A3 $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z;$

A4 $\exists 0 : \forall x \in \mathbb{R} : x + 0 = x \text{ and this } 0 \text{ is unique};$

A5 $\forall x \in \mathbb{R} : \exists (-x) \in \mathbb{R} : x + (-x) = 0 \text{ and } (-x) \text{ is unique};$

M1 $\forall x, y \in \mathbb{R} : x \cdot y \in \mathbb{R} \text{ and } x = w \land y = z \Rightarrow x \cdot y = w \cdot z;$

M2 $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x;$

M3 $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z;$

M4 $\exists 1 \neq 0 : \forall x \in \mathbb{R} : x \cdot 1 = x$ and this 1 is unique;

M5 $\forall x \neq 0 : \exists (1/x) \in \mathbb{R} : x \cdot (1/x) = 1$ and (1/x) is unique;

DL $\forall x, y, z \in \mathbb{R} : x \cdot (y+z) = x \cdot y + x \cdot z;$

Oj Omitted from the solutions as irrelevant;

9 Show using the axioms that $(x+y)^2 = x^2 + (2(xy) + y^2)$.

Here we use the notations $x^2 = x \cdot x$ and 2 = 1 + 1.

Be sure to precisely indicate what axioms you use in each step.

Solution. It is a bit of a tedious calculation; the point of which is to be really careful you don't take illegal shortcuts.

$$(x+y)(x+y) \stackrel{\text{DL}}{=} (x+y)x + (x+y)y \stackrel{\text{M2}}{=} x(x+y) + y(x+y)$$

$$\stackrel{\text{DL}}{=} (x^2 + xy) + (yx+y^2) \stackrel{\text{A3}}{=} x^2 + (xy + (yx+y^2))$$

$$\stackrel{\text{A3}}{=} x^2 + ((xy+yx) + y^2) \stackrel{\text{M2}}{=} x^2 + ((xy+xy) + y^2)$$

$$\stackrel{\text{M4}}{=} x^2 + (((xy) \cdot 1 + (xy) \cdot 1) + y^2) \stackrel{\text{DL}}{=} x^2 + ((xy)(1+1) + y^2)$$

$$\stackrel{\text{M2}}{=} x^2 + (2(xy) + y^2).$$

10 Give the definition of convergence of a series. A series $\sum_{n=1}^{\infty} a_n$ converges if

Solution. The sequence (s_k) of partial sums converges. Here $s_k = \sum_{n=1}^k a_n$.

2

5

11 Determine whether or not the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ converges, and if it does converge, whether this convergence is absolute or conditional.

Solution. First we consider absolute convergence, that is the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$. As this is just a shifted p-series with $p = \frac{1}{2} \le 1$, this series diverges.

Now the series itself is alternating, and the absolute values of the terms $(\frac{1}{\sqrt{n+1}})$ form a decreasing sequence that converges to 0, so by the alternating series test the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ converges.

As the series converges, but the sum of the absolute values diverges we conclude that this series is conditionally convergent. \Box

12 Determine for all x whether $\sum_{n=1}^{\infty} \frac{(2n)!}{n!} x^n$ converges or diverges. Also determine when the series is absolutely or conditionally convergent.

(Fill in things like $x \in [2,3)$ or x=5 in the boxes below <u>after</u> doing your calculations.)

- The series converges absolutely for x = 0
- The series converges conditionally for never
- The series diverges for $x \neq 0$

Solution. We use the ratio test to calculate the radius of convergence. Indeed we have

$$R = \lim \left| \frac{a_n}{a_{n+1}} \right| = \lim \frac{(2n)!}{n!} \frac{(n+1)!}{(2n+2)!} = \lim \frac{(n+1)!}{n!} \frac{(2n)!}{(2n+2)!}$$
$$= \lim \frac{n+1}{(2n+1)(2n+2)} = \lim \frac{1}{4n+2} = 0.$$

With a radius of convergence of 0, the series only converges at the center x = 0, and this convergence is always absolute.