
Resit Exam Mathematical Structures TW1010
Thursday April 18, 2019, 9:00-12:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+8)/8.

1 Determine using a truth table whether or not (p ∧ q)⇒ (p ∨ q) is a tautology. 4

The truth table is given by

Solution.

p q p ∧ q ⇒ p ∨ q
T T T T T
T F F T T
F T F T T
F F F T F

The statement is a tautology, since the column under ⇒, determining the validity of the
full statement only displays T ’s.

2 Give a relation on Q which is transitive, reflexive, but not symmetric. 8

The relation R is defined as xRy holds whenever

Solution. x ≤ y.

Of course there are many more examples, but this is a very well-known one.

The relation R is reflexive as

Solution. For any x ∈ Q we have x ≤ x, so xRx holds.

The relation R is not symmetric as

Solution. Take x = 1 and y = 2. Then 1 ≤ 2, so 1R2 holds, but not 2 ≤ 1, so 2R1 does
not hold.

The relation R is transitive as

Solution. Suppose xRy and yRz hold, so both x ≤ y and y ≤ z. Then x ≤ z, thus xRz
holds.



3 Find the error in the following proof. 4

Theorem: For any function f : R→ R we have f(A \ C) ⊆ f(A) \ f(C).

Proof:

1. Suppose y ∈ f(A \ C).

2. Then there exists x ∈ A \ C with f(x) = y.

3. Therefore x ∈ A and x 6∈ C.

4. As x ∈ A we have f(x) ∈ f(A).

5. As x 6∈ C we have f(x) 6∈ f(C).

6. Hence f(x) ∈ f(A) \ f(C).

7. As y = f(x) we conclude y ∈ f(A) \ f(C).

8. As we have shown for all y that y ∈ f(A\C)⇒ y ∈ f(A)\f(C) we have f(A\C) ⊆
f(A) \ f(C).

The error in the proof occurs at line number 5 . This statement is wrong as

Solution. A counterexample is given by f(x) = x2 and C = {2}, and x = −2. Then
x 6∈ C, but f(x) = 4 ∈ {4} = f(C).

Indeed this goes wrong for non-injective functions.

4 Formulate the completeness axiom for the real numbers. 2

Solution. Any non-empty bounded subset of the real numbers has a supremum.



5a Suppose f : R→ R is a decreasing function and A ⊆ R is a bounded set. Show that 6

sup(f(A)) ≤ f(inf(A)).

Solution. Take y ∈ f(A), then there exists a ∈ A with f(a) = y. As a ≥ inf(A) and f is
decreasing, we find that y = f(a) ≤ f(inf(A)). Therefore f(inf(A)) is an upper bound to
f(A), and we conclude that sup(f(A)) ≤ f(inf(A)).

5b Give a decreasing function f : R → R and a set A ⊆ R for which the strict inequality 4
sup(f(A)) < f(inf(A)) holds; and show that your example works.

Solution. Take

f(x) =

{
1 x ≤ 0,

0 x > 0.

and A = (0, 1). Then f(A) = {0}, while inf(A) = 0, so f(inf(A)) = 1. In particular
sup(f(A)) = sup({0}) = 0 ≤ 1 = f(inf(A)).

As an example you can take any decreasing function with a jump at inf(A), for which the
value at the jump is not the right-limit.

6 Show that Q is dense in R. That is, show that if x, y ∈ R with x < y, then there is a 6
rational number q ∈ Q with x < q < y.

Solution. This is Theorem 3.3.13 from the book.

Let us first assume x > 0. By the Archimedean property there is an n ∈ N for which
1
n
< y − x. Consider the set S = {m ∈ N : m > nx}, this is non-empty (by the

Archimedean property again), so by wel-ordering it has a minimal element M . Then
we find x < M

n
and M−1

n
< x (as otherwise either M − 1 ∈ S contradicting that M

is minimal, or M = 1 and we would have x ≤ 0 contradicting x > 0). But then
y = x+ (y − x) > M−1

n
+ 1

n
= M

n
. Thus q = M

n
satisfies the conditions of the statement.

In the case x ≤ 0 there is an positive integer k with k > −x, so 0 < x + k < y + k, and
we find that there is a q′ ∈ Q with x + k < q′ < y + k. But then q′ − k ∈ Q satisfies
x < q < y as desired.



7 The sequence (an) is defined recursively as an+1 =
√

8 + 1
2
anan−1, starting with a1 = 1

and a2 = 2.

7a Use induction to prove that (an) is increasing. 7
Hint: Use the statement P (n) : an ≤ an+1 ≤ an+2.

Solution. We will prove by induction that an ≤ an+1 ≤ an+2 for all n ∈ N.

We calculate a3 =
√

8 + 1
2
· 1 · 2 =

√
9 = 3, so a1 = 1 ≤ a2 = 2 ≤ a3 = 3. Therefore the

base condition holds.

Observe that an ≥ 0 for all n, as this is true for n = 1, 2 and for n ≥ 3 the an is defined
as the (positive) square root of some number.

Now assume ak ≤ ak+1 ≤ ak+2 for some k. Then we have

ak+3 =

√
8 +

1

2
ak+1ak+2 ≥

√
8 +

1

2
ak+1ak = ak+2

where we use that ak+2 ≥ ak and that ak+1 ≥ 0. As the induction hypothesis already
gives ak+1 ≤ ak+2 we can conclude that ak+1 ≤ ak+2 ≤ ak+3 holds.

By induction we see that for all n we have an ≤ an+1 ≤ an+2 and thus that the sequence
increases.

Note that you can alternatively set up an induction proof following exercise 3.1.27.

7b We still use the sequence (an) defined by an+1 =
√

8 + 1
2
anan−1, a1 = 1, and a2 = 2.

Show that (an) converges. 6

Solution. We show that the sequence is bounded above by 10 using induction. The
induction hypothesis is an ≤ 10 ∧ an+1 ≤ 10.

Indeed a1 ≤ 10 and a2 ≤ 10. Moreover if for some k we have ak, ak+1 ≤ 10, then

ak+2 =

√
8 +

1

2
akak+1 ≤

√
8 +

1

2
· 10 · 10 =

√
58 ≤ 10.

(Note that we again use that ak, ak+1 ≥ 0.) By induction we find that the sequence is
bounded by 10.

By the monotone convergence theorem we can now conclude that this increasing bounded
sequence converges.

7c Determine the limit lim an = a. 2

Solution. We have

a = lim an+1 = lim

√
8 +

1

2
anan−1 =

√
8 +

1

2
a · a =

√
8 +

1

2
a2.

Here we use the rules of calculations for limits (including that we can move a limit through
a square root, conform Example 4.2.6). Squaring this equation gives a2 = 8 + 1

2
a2, so

1
2
a2 = 8, so a2 = 16 and a = ±4. As we already noted that an ≥ 0 for all n, the limit

must be positive as well, and a = 4 is the only viable option.



8 Suppose f(x) satisfies |f(x)−f(y)| ≤
√
|x− y|. Suppose (sn) is a Cauchy sequence, show 6

that (f(sn)) is also a Cauchy sequence using the definition of Cauchy sequence.

Solution. Let ε > 0. Then there is an N such that for all n,m > N we have |sn−sm| < ε2.
Then for this same N we have for all n,m > N that

|f(sn)− f(sm)| ≤
√
|sn − sm| <

√
ε2 = ε,

thus the sequence (f(sn)) is also Cauchy.

The axioms of an ordered field as applied to R are

A1 ∀x, y ∈ R : x+ y ∈ R and x = w ∧ y = z ⇒ x+ y = w + z;

A2 ∀x, y ∈ R : x+ y = y + x;

A3 ∀x, y, z ∈ R : x+ (y + z) = (x+ y) + z;

A4 ∃0 : ∀x ∈ R : x+ 0 = x and this 0 is unique;

A5 ∀x ∈ R : ∃(−x) ∈ R : x+ (−x) = 0 and (−x) is unique;

M1 ∀x, y ∈ R : x · y ∈ R and x = w ∧ y = z ⇒ x · y = w · z;

M2 ∀x, y ∈ R : x · y = y · x;

M3 ∀x, y, z ∈ R : x · (y · z) = (x · y) · z;

M4 ∃1 6= 0 : ∀x ∈ R : x · 1 = x and this 1 is unique;

M5 ∀x 6= 0 : ∃(1/x) ∈ R : x · (1/x) = 1 and (1/x) is unique;

DL ∀x, y, z ∈ R : x · (y + z) = x · y + x · z;

Oj Omitted from the solutions as irrelevant;

9 Show using the axioms that (x+ y)2 = x2 + (2(xy) + y2). 6
Here we use the notations x2 = x · x and 2 = 1 + 1.
Be sure to precisely indicate what axioms you use in each step.

Solution. It is a bit of a tedious calculation; the point of which is to be really careful you
don’t take illegal shortcuts.

(x+ y)(x+ y)
DL
= (x+ y)x+ (x+ y)y

M2
= x(x+ y) + y(x+ y)

DL
= (x2 + xy) + (yx+ y2)

A3
= x2 + (xy + (yx+ y2))

A3
= x2 + ((xy + yx) + y2)

M2
= x2 + ((xy + xy) + y2)

M4
= x2 + (((xy) · 1 + (xy) · 1) + y2)

DL
= x2 + ((xy)(1 + 1) + y2)

M2
= x2 + (2(xy) + y2).



10 Give the definition of convergence of a series. A series
∑∞

n=1 an converges if 2

Solution. The sequence (sk) of partial sums converges. Here sk =
∑k

n=1 an.

11 Determine whether or not the series
∑∞

n=1
(−1)n√
n+1

converges, and if it does converge, whether 4
this convergence is absolute or conditional.

Solution. First we consider absolute convergence, that is the series
∑∞

n=1
1√
n+1

. As this

is just a shifted p-series with p = 1
2
≤ 1, this series diverges.

Now the series itself is alternating, and the absolute values of the terms ( 1√
n+1

) form
a decreasing sequence that converges to 0, so by the alternating series test the series∑∞

n=1
(−1)n√
n+1

converges.

As the series converges, but the sum of the absolute values diverges we conclude that this
series is conditionally convergent.

12 Determine for all x whether
∑∞

n=1
(2n)!
n!
xn converges or diverges. Also determine when the 5

series is absolutely or conditionally convergent.

(Fill in things like x ∈ [2, 3) or x = 5 in the boxes below after doing your calculations.)

• The series converges absolutely for x = 0

• The series converges conditionally for never

• The series diverges for x 6= 0

Solution. We use the ratio test to calculate the radius of convergence. Indeed we have

R = lim

∣∣∣∣ anan+1

∣∣∣∣ = lim
(2n)!

n!

(n+ 1)!

(2n+ 2)!
= lim

(n+ 1)!

n!

(2n)!

(2n+ 2)!

= lim
n+ 1

(2n+ 1)(2n+ 2)
= lim

1

4n+ 2
= 0.

With a radius of convergence of 0, the series only converges at the center x = 0, and this
convergence is always absolute.
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