Resit Exam Mathematical Structures TW1010 3
Thursday April 18, 2019, 9:00-12:00 TUDelft

No calculators allowed. Write the solutions in the fields provided. The grade is (score+8)/8.

1 Determine using a truth table whether or not (p A ¢) = (pV ¢q) is a tautology.
The truth table is given by

Solution.
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The statement is a tautology, since the column under =, determining the validity of the
full statement only displays 7T"s. O]

2 Give a relation on Q which is transitive, reflexive, but not symmetric.

The relation R is defined as xRy holds whenever

Solution. x <y.

Of course there are many more examples, but this is a very well-known one. O
The relation R is reflexive as

Solution. For any x € Q we have x < x, so x Rz holds. O
The relation R is not symmetric as

Solution. Take x =1 and y = 2. Then 1 < 2, so 1R2 holds, but not 2 < 1, so 2R1 does
not hold. O

The relation R is transitive as

Solution. Suppose xRy and yRz hold, so both x < y and y < z. Then = < z, thus zRz
holds. O



3 Find the error in the following proof.
Theorem: For any function f: R — R we have f(A\ C) C f(A)\ f(O).
Proof:

Suppose y € f(A\ C).

Then there exists z € A\ C with f(z) =v.
Therefore v € A and x ¢ C.

As z € A we have f(z) € f(A).

As z ¢ C we have f(z) & f(C).

Hence f(x) € f(A)\ f(C).

As y = f(z) we conclude y € f(A)\ f(C).

As we have shown for all y that y € f(A\C) =y € f(A)\ f(C) we have f(A\C) C
FAN ().
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The error in the proof occurs at line number | 5 | This statement is wrong as

Solution. A counterexample is given by f(z) = z? and C = {2}, and x = —2. Then
x & C,but f(z)=4¢€ {4} = f(CO).
Indeed this goes wrong for non-injective functions. O]

4 Formulate the completeness axiom for the real numbers.

Solution. Any non-empty bounded subset of the real numbers has a supremum. m
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Suppose [ : R — R is a decreasing function and A C R is a bounded set. Show that
sup(f(A)) < f(inf(A)).

Solution. Take y € f(A), then there exists a € A with f(a) =y. As a > inf(A) and f is
decreasing, we find that y = f(a) < f(inf(A)). Therefore f(inf(A)) is an upper bound to
f(A), and we conclude that sup(f(A)) < f(inf(A)). O

Give a decreasing function f : R — R and a set A C R for which the strict inequality
sup(f(A)) < f(inf(A)) holds; and show that your example works.

Solution. Take
1 <0,

f(x):{o z>0.

and A = (0,1). Then f(A) = {0}, while inf(A) = 0, so f(inf(A)) = 1. In particular
sup(f(A4)) =sup({0}) = 0 < 1 = f(inf(A)).

As an example you can take any decreasing function with a jump at inf(A), for which the
value at the jump is not the right-limit. O

Show that Q is dense in R. That is, show that if x,y € R with x < y, then there is a
rational number ¢ € Q with x < ¢ < y.

Solution. This is Theorem 3.3.13 from the book.

Let us first assume x > 0. By the Archimedean property there is an n € N for which
L <y — 2. Consider the set S = {m € N : m > nz}, this is non-empty (by the

Archimedean property again), so by wel-ordering it has a minimal element M. Then

we find z < & and #=1 < z (as otherwise either M — 1 € S contradicting that M
is minimal, or M = 1 and we would have z < 0 contradicting x > 0). But then
y=x+ (y—x) > % + % = % Thus ¢ = % satisfies the conditions of the statement.

In the case © < 0 there is an positive integer k with & > —z,s0 0 < 2+ k <y + k, and
we find that there is a ¢ € Q with z + k < ¢ < y + k. But then ¢ — k € Q satisfies
r < q <y as desired. O
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The sequence (a,) is defined recursively as a,.1 = /8 + %anan,l, starting with a; = 1

and as = 2.

Use induction to prove that (a,) is increasing.
Hint: Use the statement P(n) : a, < api1 < Gpoo.

Solution. We will prove by induction that a, < a,+1 < a, for all n € N.
We calculate a3 = ,/8+%-1-2 =9 = 3,50 a1 =1<ay =2 < a3 = 3. Therefore the
base condition holds.

Observe that a,, > 0 for all n, as this is true for n = 1,2 and for n > 3 the a,, is defined
as the (positive) square root of some number.

Now assume a; < agi1 < agyo for some k. Then we have

1 1
agq3 = \/8 + 5 Oh+1 0kt >4 /8+ o Mh+10k = Q2

where we use that ag,o > ap and that ag,; > 0. As the induction hypothesis already
gives ayy1 < apyo we can conclude that axy; < agio < agis holds.

By induction we see that for all n we have a,, < a,+1 < a,42 and thus that the sequence
increases.

Note that you can alternatively set up an induction proof following exercise 3.1.27. [

We still use the sequence (a,,) defined by a,,1 = /8 + %anan_l, a; =1, and ay = 2.

Show that (a,) converges.

Solution. We show that the sequence is bounded above by 10 using induction. The
induction hypothesis is a,, < 10 A a,41 < 10.

Indeed a; < 10 and ay < 10. Moreover if for some k£ we have ay, ap.1 < 10, then

1 1
Qo = \/8+§akak+1 < \/8+§~10-10:\/§§ 10.

(Note that we again use that ax,ary1 > 0.) By induction we find that the sequence is
bounded by 10.

By the monotone convergence theorem we can now conclude that this increasing bounded
sequence converges. O

Determine the limit lim a,, = a.

Solution. We have

. . 1 1 1
a=lima,;; =lim 8+§anan_1: 8+§a~a: 8+§a2.

Here we use the rules of calculations for limits (including that we can move a limit through
a square root, conform Example 4.2.6). Squaring this equation gives a* = 8 + %CLQ, SO
2a®> = 8,50 a® = 16 and a = +4. As we already noted that a, > 0 for all n, the limit
must be positive as well, and a = 4 is the only viable option. O




8 Suppose f(z) satisfies | f(z) — f(y)| < /|x — y|. Suppose (s,) is a Cauchy sequence, show
that (f(sy)) is also a Cauchy sequence using the definition of Cauchy sequence.

Solution. Let € > 0. Then there is an N such that for all n,m > N we have s, — s,,,| < €.
Then for this same N we have for all n,m > N that

1£(5n) = f(5m)| < V|50 — sm| < VE =,

thus the sequence (f(s,)) is also Cauchy. O

The axioms of an ordered field as applied to R are

Al Ve,yeR:z+yeRandr=wAy=z=x+y=w+ z;
A2 Ve,yeR:z+y=y+x;
A3 Ve,y,z e Rz +(y+2)=(z+y)+ 2
A4 30 :Vx € R: x + 0 = x and this 0 is unique;
A5 VzeR:3(—x) e R: 2+ (—x) =0 and (—z) is unique;
Ml Ve,yeR:z-yeRander=wAy=z=2x-y=w- 2z
M2Ve,yeR:z-y=y-x;
M3 Vz,y,zeR:z-(y-2)=(x-y) 2
M4 91 #0:Vz € R: 2z -1 =z and this 1 is unique;
M5 Ve #£0:3(1/z) e R:2z-(1/x) =1 and (1/x) is unique;
DL Vx,y,zeR:z-(y+z2)=x-y+x-z;
Oj Omitted from the solutions as irrelevant;

9 Show using the axioms that (z + y)? = 22 + (2(zy) + y?).

Here we use the notations 22 =z -z and 2 =1 + 1.
Be sure to precisely indicate what axioms you use in each step.

Solution. It is a bit of a tedious calculation; the point of which is to be really careful you
don’t take illegal shortcuts.

IS

= (ry)r+ (@ +y)y = 2@ +y) +yle +y)
(:v +ay) + (yr+12) 2 2+ (ay + (yz +9))
v + ((zy +yz) +17) £ 22 +((xy+xy)+y)
2+ (((2y) - 1+ (2y) - 1) +32) Z 2 + ((2y) (1 +1) +37)
2+ (2(zy) + 7). O

(z+y)(z+y)

||z |I:l> =

||Z



10 Give the definition of convergence of a series. A series Y, a, converges if

Solution. The sequence (si) of partial sums converges. Here s;, = Zﬁ:l Q- O

11 Determine whether or not the series >, E/:% converges, and if it does converge, whether

this convergence is absolute or conditional.

Solution. First we consider absolute convergence, that is the series Y -, ﬁ As this
is just a shifted p-series with p = % < 1, this series diverges.

Now the series itself is alternating, and the absolute values of the terms ( \/nlﬁ) form

a decreasing sequence that converges to 0, so by the alternating series test the series
Yo E/_% converges.

As the series converges, but the sum of the absolute values diverges we conclude that this
series is conditionally convergent. O

12 Determine for all = whether y 7 %x" converges or diverges. Also determine when the

series is absolutely or conditionally convergent.

(Fill in things like x € [2,3) or x = 5 in the boxes below after doing your calculations.)

e The series converges absolutely for =0
e The series converges conditionally for never
e The series diverges for x#0

Solution. We use the ratio test to calculate the radius of convergence. Indeed we have

| | ! |
2= 1im |9 | — i (2n)! (n+ 1)! — lim (n+1)! (2n)!
Api1 n! (2n+2)! n! (2n+2)!
. n+1 . 1
= lim = lim =0
(2n+1)(2n +2) dn +2

With a radius of convergence of 0, the series only converges at the center x = 0, and this
convergence is always absolute. O]
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