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NB. This exam contains three questions!

1 We consider two versions of Taylor’s Theorem, applied to linearisation of a function f (x) around
x = a, in which two different formulas for the remainder (that is the error) are considered. The first
version of Taylor’s Theorem reads as:

Theorem 1.1: Suppose that a < b ≤ x < c, and let f ∈ C2(a,c) (that is f has continuous second
order derivatives on (a,x)), then there is a ξ ∈ (a,x) such that

f (x) = f (b)+(x−b) f ′(b)+
1
2
(x−b)2 f ′′(ξ ). (1)

The first focus is on Theorem 1.1. We prove Theorem 1.1 by assuming that the error behaves quadrat-
ically, that is, we assert

f (x)− ( f (b)+(x−b) f ′(b)) = A(x−b)2, (2)

for a certain A ∈ R.

a We introduce the function φ(t) = f (t)− ( f (b)+(t−b) f ′(b))−A(t−b)2, where all the condi-
tions in Theorem 1.1 are satisfied. Show that φ(b) = 0 = φ(x) and that φ ′(b) = 0. (2pt)

b Prove that there is a ξ ∈ (b,x) such that A = 1
2 f ′′(ξ ), and complete the proof of Theorem 1.1.

(2pt)

Secondly, we focus on Theorem 1.2, which reads as

Theorem 1.2: Suppose that b < x, and let f , f ′, f ′′ ∈ L2(b,x) (that is f , f ′ and f ′′ are square inte-
grable over (b,x)), then

f (x) = f (b)+(x−b) f ′(b)+
∫ x

b
(x− t) f ′′(t)dt. (3)

c Prove Theorem 1.2 (in particular equation (3). Hint: Use integration by parts. (2pt)

d Suppose that there an M > 0 such that | f ′′(t)| ≤ M for t ∈ [b,x]. Prove that both versions of
Taylor’s Theorem (Theorem 1.1 and Theorem 1.2) imply the following upper bound for the
error:

| f (x)− ( f (b)+(x−b) f ′(b))| ≤ 1
2

M(x−b)2. (4)

(2pt)

2 We consider the following boundary value problem (convection-diffusion equation): −εy′′+ y′ = 0, for x ∈ (0,1),

y(0) = 0, y(1) = 1,
(5)

where ε > 0.

a Motivate why we can expect problems as ε −→ 0 in boundary value problem (5). (1pt)



b Prove that y(x) = exp( x
ε
)−1

exp( 1
ε
)−1

is a solution to boundary value problem (5). (1pt)

c We use the finite difference method to approximate the solution to boundary value problem (5).
We use central differences to approximate the first-order term and a mesh with nodal points
x j = j∆x, where xn+1 = 1. Derive the set of linear equations for general n. Write the system
in the form of Aw = b (where w represents the approximation), give the entries of A and of b.
Take care of the boundary conditions. (3pt)

d Show that the local truncation error, defined by ε = Ay−b, where y represents the exact solu-
tion, is of order O(∆x2) as ∆x→ 0. (2pt)

e We are going to analyse the behaviour of the numerical approximation with respect to spurious
oscillations. For the numerical approximation, we set the following power relation w j = r j,
where r ∈ R. Show that this gives the following quadratic equation for r

− ε

∆x2 (r
2−2r+1)+

1
2∆x

(r2−1) = 0, (6)

with solutions r = 1 and r =
∆x
2ε

+1
1− ∆x

2ε

for 1− ∆x
2ε
6= 0. (2pt)

f Show that we have to choose ∆x < 2ε in order to prevent spurious oscillations. (2pt)

3 We consider the generic initial value problem

y′ = f (t,y(t)), y(t0) = y0, (7)

of which we approximate the solution by the following predictor-corrector method
w∗ = wn +

∆t
2

f (tn,wn),

wn+1 = wn +∆t f (tn +
1
2

∆t,w∗).

(8)

a Show that the local truncation error is of order O(∆t2). It is not allowed to use the test equation.
(3pt)

b We consider the following system of differential equations

y′1 =−2y1 + y2,

y′2 = y1−2y2,
(9)

which values of ∆t give a stable numerical numerical integration to the above system if we use
method (8)? (2pt)

c Does the numerical approximation obtained by method (8) applied to problem (9) converge?
Motivate your answer. (2pt)

d As the initial condition, we use y1(0) = 1, and y2(0) = 1, use method (8) to approximate the
solution of problem (9) after one time-step of ∆t = 0.5. (2pt)

e Compare the behaviour of numerical stability of method (8) to the stability of Heun’s method,
which reads as 

w∗ = wn +∆t f (tn,wn),

wn+1 = wn +
∆t
2
( f (tn,wn)+ f (tn +∆t,w∗)).

(10)

(2pt)


