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1 a The local truncation error is defined by

τn+1(∆t) :=
yn+1− zn+1

∆t
, (1)

where zn+1 is obtained from using the exact solution yn = y(tn) at time tn. For the exact solution,
we have

yn+1 = y(tn +∆t) = yn +∆ty′(tn)+
∆t2

2
y′′(ζ ), with ζ ∈ (tn, tn+1). (2)

Using y′(t) = f (t,y) gives y′(tn) = f (tn,yn) and hence

yn+1 = y(tn +∆t) = yn +∆t f (tn,yn)+
∆t2

2
y′′(ζ ), with ζ ∈ (tn, tn+1). (3)

Since Euler’s forward method applied using the exact solution at the previous time, gives the
following expression for zn+1

zn+1 = yn +∆t f (tn,yn), (4)

we get, using equation (1),

τn+1(∆t) =
yn +∆t f (tn,yn)+

∆t2

2 y′′(ζ )− (yn +∆t f (tn,yn))

∆t
=

∆t
2

y′′(ζ ) = O(∆t). (5)

One may relate y′′(t) to f by y′′(t) = dy′(t)
dt = ∂ f

∂ t +
∂ f
∂y y′(t) = ∂ f

∂ t +
∂ f
∂y f (t,y) (but this is not

necessary).

b We apply Euler’s forward method to y′1 =−2y1 +αy2,

y′2 =−αy1−2y2.
(6)

We start by writing the above system of ODEs into the following matrix equation

y′ = Ay, where A =

(
−2 α

−α −2

)
. (7)

Subsequently, we determine the eigenvalues of the matrix A, which are given by

λ (A) = {−2−αi,−2+αi}.

Note that both eigenvalues are non-real. For the sake of stability, we need the amplification
factor, which is derived by the use of the test equation, which reads as y′ = λy. For Euler’s
forward method, we get

wn+1 = wn +∆tλwn = (1+∆tλ )wn, (8)

and hence the amplification factor is given by

Q(∆tλ ) = 1+∆tλ . (9)

Stability of the numerical method requires that

|Q(∆tλ )| ≤ 1, for all eigenvalues in λ (A). (10)



Hence, for the current system, we get

Q(∆tλ ) = 1+∆t(−2±αi), (11)

which gives the following condition

|Q(∆tλ )|2 = (1−2∆t)2 +(α∆t)2 ≤ 1. (12)

Processing the above equation further, gives

1−4∆t +(4+α
2)∆t2 ≤ 1 =⇒ ∆t ≤ 4

4+α2 . (13)

Note that since λ /∈ R, it is not allowed to use ∆t ≤ 2
−λ

.

c Lax Equivalence Theorem states: A stable, consistent scheme gives a converging numerical so-
lution. Consistency of the scheme means that lim

∆t→0
τn+1(∆t) = 0. In assignment 1a, we proved

that τn+1(∆t) = O(∆t) and hence lim
∆t→0

τn+1(∆t) = 0 and herewith the scheme is consistent (the

local truncation error tends to zero as the time-step tends to zero).

We also demonstrated that the scheme is stable if ∆t ≤ 4
4+α2 . Hence the numerical solution

converges if ∆t ≤ 4
4+α2 .

d To assess numerical stability, we apply the method to the test equation, then for the Trapezoidal
Rule, we obtain the following expression

wn+1 = wn +∆tλ (wn +wn+1). (14)

The above equation gives the following result for wn+1

wn+1 =
1+ ∆tλ

2

1− ∆tλ
2

wn. (15)

Hence the amplification factor is given by

Q(∆tλ ) =
1+ ∆tλ

2

1− ∆tλ
2

. (16)

For stability, it is required to have |Q(∆tλ )| ≤ 1, hence using the eigenvalues from question 1b,
gives

|
1+ ∆tλ

2

1− ∆tλ
2

|2 =
|1+ ∆tλ

2 |
2

|1− ∆tλ
2 |2

=
(1−∆t)2 +(∆tα

2 )2

(1+∆t)2 +(∆tα
2 )2

≤ 1. (17)

The above inequality easily follows for all ∆t ≥ 0, and hence the Trapezoidal method is stable
for all choices of ∆t ≥ 0 (unconditionally stable).

e Since the method is implicit, we are allowed to use the test equation for the assessment of the
local truncation error. For the exact solution, we have

yn+1 = y(tn +∆t) = yn +∆ty′(tn)+
∆t2

2
y′′(tn)+

∆t3

6
y′′′(tn)+

∆t4

24
y(4)(ζ ), for ζ ∈ (tn, tn+1).

(18)
Using the test equation, this gives

yn+1 = (1+∆tλ +
(∆tλ )2

2
+

(∆tλ )3

6
+O(∆tλ )4))yn. (19)



For the numerical approximation using the exact solution at the previous time, we get

zn+1 = yn +∆tλ (yn + zn+1), (20)

and hence we get
zn+1 = Q(∆tλ )yn. (21)

Hence for the local truncation error, we get

τn+1(∆t) =
yn+1− zn+1

∆t
=

(1+∆tλ + (∆tλ )2

2 + (∆tλ )3

6 +O(∆t4)−Q(∆tλ ))yn

∆t
. (22)

Using the following expansion (one can derive this result using the geometric series (1−x)−1 =
1+ x+ x2 +O(x3)), one gets

Q(∆tλ ) = 1+∆tλ +
(∆tλ )2

2
+

(∆tλ )3

4
+O(∆tλ )4. (23)

This expression is substituted into the local truncation error to yield

τn+1(∆t)=
(1+∆tλ + (∆tλ )2

2 + (∆tλ )3

6 +O(∆t4)− (1+∆tλ + (∆tλ )2

2 + (∆tλ )3

4 +O(∆tλ )4))yn

∆t
=O(∆t2).

(24)
(As alternative proofs of the above statement, one can also write out a Taylor series for Q(∆tλ )
or make the denominators equal in the fractions.)

2 We consider the boundary value problem −y′′+ y = f (x) = x2−2, voor x ∈ (0,1),

y(0) = 0, y(1) = 1.
(25)

a Showing that y(x) = x2 represents the solution to the boundary value problem amounts to sub-
stituting the expression into the differential equation, which gives −y′′+ y = −2+ x2 = f (x),
which validates the differential equation. Subsequently, the solution of the boundary value
problem should also satisfy the boundary conditions. For y(x) = x2, it is easy to see by sub-
stituting x = 0 and x = 1 that that y(0) = 0 and y(1) = 1, which verifies that the boundary
conditions are satisfied. Hence the expression y(x) = x2 is indeed a solution to the boundary
value problem.

b Using the finite difference method amounts to replacing all derivatives with difference formu-
las. This gives

y′′(x)≈ y(x+∆x)−2y(x)+ y(x−∆x)
∆x2 , (26)

and to dividing the domain of computation into meshpoints, x j = j∆x, where we choose xn+1 =
1. Then the above equation is substituted into the differential equation and the truncation error
is neglected to give

−w j−1 +2w j−w j+1

∆x2 +w j = f (x j) = x2
j −2, for j = 1, . . . ,n. (27)

Note that w j represents the numerical solution, whereas y j denotes the exact solution. Further,
we note that there n unknowns (degrees of freedom). For j = 1, w j−1 = w0 = y0 = 0 from the
boundary condition, and likewise for j = n, we have wn+1 = 1, this gives the following two
equations for j = 1 and j = n:

2w1−w2
∆x2 +w1 = f (x1) = x2

1−2,

−wn−1+2wn
∆x2 +wn = f (xn)+

1
∆x2 = x2

n−2+ 1
∆x2 .

(28)



This implies aii =
2

∆x2 +1 for all i = 1, . . . ,n, aii−1 =− 1
∆x2 for all i = 2, . . . ,n and aii+1 =− 1

∆x2

for all i = 1, . . . ,n−1. Further b j = f (x j) = x2
j −2 for j = 1, . . . ,n−1 and bn = f (xn)+

1
∆x2 =

x2
n−2+ 1

∆x2 .

c i The local truncation error is given by

ε = Ay−b. (29)

Componentwisely, for i = 2, . . . ,n−1, we have bi = f (xi) =−y′′(xi)+ yi, hence applying
the above equation to these rows, we get

εi =−
yi−1

∆x2 +(
2

∆x2 +1)yi−
yi+1

∆x2 yi+1 + y′′(xi)− yi =

−yi−1−2yi + yi+1

∆x2 + y′′(xi) = O(∆x2).

(30)

The last equality comes from the fact that the central differences represents a second order
approximation of the second order derivative. This fact is shown by using Taylor series:

yi±1 = y(xi±∆x) = y(xi +∆x) = yi±∆xy′(xi)+
∆x2

2
y′′(xi)±

∆x3

6
y′′′(xi)+

∆x4

24
y(4)(ζ±),

(31)
where ζ± ∈ (min(xi±1,xi),max(xi±1,xi)).

For the boundary nodes we use y0 = 0 and yn = 1, respectively, to get

ε1 = (
2

∆x2 +1)y1−
yi−1

∆x2 y2 + y′′(x1)− y1 +
y0

∆x2 =

−y0−2y1 + y2

∆x2 + y′′(x1) = O(∆x2),

(32)

and
εn =−

yn−1

∆x2 +(
2

∆x2 +1)yn + y′′(xn)− yn−
yn

∆x2 =

−yn−1−2yn + yn+1

∆x2 + y′′(xn) = O(∆x2).

(33)

Herewith the local truncation error is of order O(∆x2).
ii We verified that the exact solution is given by y(x) = x2, for which y(p)(x) = 0 for p ≥ 3.

Since the local truncation error only contains fourth order derivatives of the solution y(x),
it clearly follows that the local truncation error vanishes (that is, it is zero). Hence ε = 0.

d Gershgorin’s Theorem says: Given an n×n-matrix A, and let λ (A) = {λ1, . . . ,λn}, where λi is
an eigenvalue of A, then

λ (A)⊂
n⋃

i=1

{λ ∈ C : |λ −aii| ≤ ∑
j∈{1,...,n}\{i}

|ai j}. (34)

First of all, symmetry of A implies that the eigenvalues of A are real-valued. Application of
Gershgorin’s Theorem to the first and last row of the matrix A gives:

|λ − (
2

∆x2 +1)| ≤ |− 1
∆x2 |=

1
∆x2 . (35)

Since A has real eigenvalues only, this implies

− 1
∆x2 ≤ λ − (

2
∆x2 +1)≤ 1

∆x2 . (36)



This implies

1+
1

∆x2 ≤ λ ≤ 1+
3

∆x2 . (37)

For the remaining rows, we get

|λ − (
2

∆x2 +1)| ≤ |− 1
∆x2 |+ |−

1
∆x2 |=

2
∆x2 . (38)

Since A has real eigenvalues only, this implies

− 2
∆x2 ≤ λ − (

2
∆x2 +1)≤ 2

∆x2 . (39)

This implies

1≤ λ ≤ 1+
4

∆x2 . (40)

Since Gershgorin gives the union of the discs in the complex plane for the location of the
eigenvalues, and since the bounds from the first and last rows of the matrix are contained within
the other rows, it follows directly that the eigenvalues of A are between the following bounds:

1≤ λ ≤ 1+
4

∆x2 , or λ (A)⊂ [1,1+
4

∆x2 ]. (41)

The highest lower bound of the eigenvalues of A is given by 1 and the lowest upper bound of
the eigenvalues of A is given by 1+ 4

∆x2 .

e By definition, the discretisation for the boundary value problem is consistent if ||ε|| = ||Ay−
b|| −→ 0 as ∆x −→ 0. In assignment 2ci, we saw that ||ε||2 = ||Ay− b||2 = O(∆x2) −→
0 as ∆x−→ 0. Hence the current finite differences schema is consistent.

Furthermore, A is symmetric, which implies that A−1 is also symmetric. Since for symmetric
matrices, we have ||A||2 = max |λ (A)|, where |λ (A)| := {|λ1|, . . . , |λn|}, and since if λ is an
eigenvalue of A then 1

λ
is an eigenvalue of A−1, it follows that

||A−1‘||2 =
1

min |λ (A)|
≤ 1 also as ∆x−→ 0. (42)

Hence by definition, the finite difference scheme is stable.

The equivalence Theorem by Lax says: A stable, consistent discretisation method for an initial
boundary problem gives a convergent solution, that is e = y−w−→ 0 as ∆x−→ 0.

We already proved that the current scheme is stable and consistent, hence from Lax’ Theorem,
it follows that the numerical solution converges the exact solution as ∆x −→ 0 (in the current
case, we even have that the numerical solution and the exact solution coincide).

3 We solve the following problem for p > 0:

Solve for p > 0: f (p) = p2−3 = 0. (43)

a i From p0 = 1, we get p1 = 1− 1
9 (1−3) = 11

9 . Subsequently, we get p2 =
11
9 −

1
9 (

121
81 −3) =

953
729 .

ii We use Banach’s Contraction Theorem, which for the current case says:

Let g ∈ C1[1,3], and g : [1,3] −→ [1,3], and if ∃ k ∈ [0,1) such that |g′(x)| ≤ k for all
x ∈ [1,3], then ∃! p ∈ [1,3] such that p = g(p).

First, it is clear that g(x) is a polynomial, which is in C1[1,3]. Furthermore, g′(x) = 1− 2
9 x,



and hence g′(x)> 0 on [1,3], which implies that g(x) is monotonically increasing on [1,3].
Further, g(1) = 11

9 ∈ [1,3] and g(3) = 7
3 ∈ [1,3] and hence g : [1,3]−→ [1,3].

Secondly, we see that g′(x) = 1− 2
9 x, which decreases monotonically and takes values

within [ 1
3 ,

7
9 ], hence |g′(x)| ≤ 7

9 ∈ [0,1). Herewith all requirements of Banach’s Fixed
Point Theorem are satisfied and therewith there is one and only one fixed point for g(x) on
[1,3].

iii Picard’s Iteration Theorem says:

Let g ∈ C1[1,3], and g : [1,3] −→ [1,3], and if ∃ k ∈ [0,1) such that |g′(x)| ≤ k for all
x ∈ [1,3], then the sequence defined by pn+1 = g(pn) gives pn −→ p as n −→ ∞, where
p = g(p), for each p0 ∈ [1,3].

In assignment 3aii, we demonstrated that all hypotheses in the above theorem are satisfied,
hence we have pn −→ p as n−→ ∞ for each p0 ∈ [1,3].

(As an alternative answer, one may also base the proof on |p− pn+1| = |g(p)− g(pn)| =
|g′(ζ )||p− pn| ≤ k|p− pn|, using the Mean Value Theorem, and which inductively will
amount to 0 ≤ |p− pn+1| ≤ kn+1|p− p0| = ( 7

9 )
n+1|p− p0| → 0 as n −→ ∞, and use the

Squeeze Theorem.)

b Newton-Raphson’s Method is based on successive approximations of a zero of the function
f (x). Suppose that pn is known, then we equate the linearisation of f (x) (and disregard errors)
around pn to zero at the subsequent estimate pn+1:

f (pn)+ f ′(pn)(pn+1− pn) = 0. (44)

Then it easily follows that

pn+1 = pn−
f (pn)

f ′(pn)
. (45)

c Application of the Newton-Raphson method to the function f (x) = x2−3, gives with f ′(x) =
2x:

pn+1 = pn−
f (pn)

f ′(pn
= pn−

p2
n−3
2pn

=
2p2

n− (p2
n−3)

2pn
=

p2
n +3
2pn

. (46)

d Take p0 = 1, then p1 =
1+3
2∗1 = 2, and p2 =

22+3
2∗2 = 7

4 .


