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ANSWERS

1 a Let
φ(t) = f (t)− ( f (b)+(t−b) f ′(b))−A(t−b)2, (1)

then
φ(b) = f (b)− ( f (b)+(b−b) f ′(b))−A(b−b)2 = f (b)− f (b) = 0.

Further it was given (see equation (2) in the exam) that

f (x)− ( f (b)+(x−b) f ′(b)) = A(x−b)2, (2)

which implies
f (x)− ( f (b)+(x−b) f ′(b))−A(x−b)2 = 0. (3)

Substituting t = x into equation (1), gives

φ(x) = f (x)− ( f (b)+(x−b) f ′(b))−A(x−b)2 = 0,

where the last equality follows from equation (3). Hence φ(b) = 0 and φ(x) = 0. From the
definition of φ(t), it follows that

φ
′(t) = f ′(t)− ( f ′(b)−2A(t−b)) =⇒ φ

′(b) = f ′(b)− ( f ′(b)−2A(b−b)) = 0.

b Note that φ ∈C2(a,c) and a < b < x < c. Since φ(b) = φ(x) = 0, it immediately follows from
the Mean Value Theorem that ∃η ∈ (b,x) such that φ ′(η) = 0. Note that we already concluded
in part a that φ ′(b) = 0, and note that φ ∈C2(a,c) and a < b < x < c, then we use the Mean
Value Theorem again to conclude that ∃ξ ∈ (b,η)⊂ (b,x) such that φ ′′(ξ ) = 0.
The second derivative of φ is found easily:

φ
′′(t) = f ′′(t)−2A.

Since φ ′′(ξ ) = 0, it follows that f ′′(ξ ) = 2A =⇒ A = f ′′(ξ )
2 . From equation (2), it follows that

f (x) = f (b)+(x−b) f ′(b)+
f ′′(ξ )

2
(x−b)2,

which concludes the proof of Theorem 1.1.

c We perform integration by parts on the last term on the right-hand side in equation (3) of the
exam, to get∫ x

b
(x− t) f ′′(t)dt =

[
(x− t) f ′(t)

]x
b +

∫ x

b
f ′(t)dt =−(x−b) f ′(b)+ f (x)− f (b).

In the last step, the Main Theorem from Integration has been used. This implies that

f (x) = f (b)+(x−b) f ′(b)+
∫ x

b
(x− t) f ′′(t)dt,

which concludes the proof of Theorem 1.2.



d Suppose that there an M > 0 such that | f ′′(t)| ≤M for t ∈ [b,x]. First, we focus on the bound
from Theorem 1.1. Then from Theorem 1.1, it follows that there is a ξ ∈ (b,x) such that

f (x)− ( f (b)+(x−b) f ′(b)) = 1
2 (x−b)2 f ′′(ξ )

=⇒ | f (x)− ( f (b)+(x−b) f ′(b))|= 1
2 (x−b)2| f ′′(ξ )| ≤ 1

2 M(x−b)2.

The last inequality follows from the given hypothesis that there an M > 0 such that | f ′′(ξ )| ≤M
for ξ ∈ [b,x].
Secondly, we focus on Theorem 1.2. Theorem 1.2 implies

f (x)− ( f (b)+(x−b) f ′(b)) =
∫ x

b
(x− t) f ′′(t)dt

=⇒ | f (x)− ( f (b)+(x−b) f ′(b))|= |
∫ x

b
(x− t) f ′′(t)dt| ≤M

∫ x

b
(x− t)dt =

M
2
(x−b)2.

The second last step follows from the hypothesis | f ′′(t)| ≤M for t ∈ (b,x) (and from Theorem
1.6.5 (The Mean Value Theorem for Integration) in the book).

2 We consider the following boundary value problem (convection-diffusion equation): −εy′′+ y′ = 0, for x ∈ (0,1),

y(0) = 0, y(1) = 1,
(4)

where ε > 0.

a If ε = 0, then the problem becomes

y′ = 0, for x ∈ (0,1),

y(0) = 0, y(1) = 1,

Since y′ = 0, this implies that y = C, where C is a constant. From x = 0, we have C = 0,
however, from x = 1, we get C = 1. Hence we end up at a contradiction.

b We can use multiple ways to demonstrate that y(x) = exp( x
ε
)−1

exp( 1
ε
)−1

is a solution to the boundary

value problem. We will use substitution, differentiation gives

y′(x) =
exp( x

ε
)

ε(exp( 1
ε
)−1)

=⇒ y′′(x) =
exp( x

ε
)

ε2(exp( 1
ε
)−1)

.

Substitution into the differential equation, gives

−εy′′+ y′ =−ε
exp( x

ε
)

ε2(exp( 1
ε
)−1)

+
exp( x

ε
)

ε(exp( 1
ε
)−1)

= 0.

Hence the expression for y(x) satisfies the differential equation. Subsequently, the boundary

conditions have to be checked. That is y(0) = exp( 0
ε
)−1

exp( 1
ε
)−1

= 0 and y(1) = exp( 1
ε
)−1

exp( 1
ε
)−1

= 1. Hence

y(x) satisfies the boundary value problem.

c First, we write the derivatives at points x j in terms of finite differences, and we use the notation
y(x j) = y j, which gives

y′′(x j) =
yi+1−2y j + y j−1

∆x2 +O(∆x2),

y′(x j) =
y j+1− y j−1

2∆x
+O(∆x2).



Substitution into the differential equation gives

0 =−εy′′+ y′ =−ε
yi+1−2y j + y j−1

∆x2 +
y j+1− y j−1

2∆x
+O(∆x2).

Next, we neglect the error, and use w j to denote the numerical approximation of y j, to obtain
the following (linear) algebraic equation for w j:

−ε
wi+1−2w j +w j−1

∆x2 +
w j+1−w j−1

2∆x
= 0, for j ∈ {1, . . . ,n}. (5)

As boundary conditions, we have y0 = 0, and yn+1 = 1 (since x0 = 0 and xn+1 = 1), this trans-
lates into w0 = 0 and wn+1 = 1, this gives for j = 1:

−ε
w2−2w1

∆x2 +
w2

2∆x
= 0. (6)

For j = n, we get

−ε
−2wn +wn−1

∆x2 − wn−1

2∆x
=

ε

∆x2 −
1

2∆x
(7)

Equation (5) represents the j-th equation of the system of linear equations Aw = b, hence the
entries of A (ai j) become

a j j−1 =−
ε

∆x2 −
1

2∆x
, a j j =

2ε

∆x2 , a j j+1 =−
ε

∆x2 +
1

2∆x
, b j = 0, j ∈ {2, . . . ,n−1}.

From equation (6), we get for the first row

a11 =
2ε

∆x2 , a12 =−
ε

∆x2 +
1

2∆x
, b1 = 0.

For the last row, we get

an n−1 =−
ε

∆x2 −
1

2∆x
, an n =

2ε

∆x2 , bn =
ε

∆x2 −
1

2∆x
.

The discretisation matrix A is given by

A =


2ε

∆x2 − ε

∆x2 +
1

2∆x 0 . . . 0
− ε

∆x2 − 1
2∆x

2ε

∆x2 − ε

∆x2 +
1

2∆x 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 − ε

∆x2 − 1
2∆x

2ε

∆x2 − ε

∆x2 +
1

2∆x
0 . . . . . . . . .0 − ε

∆x2 − 1
2∆x

2ε

∆x2

 ,

and the right-hand side vector b is given by

b =


0
. . .
. . .
0

ε

∆x2 − 1
2∆x


d We use the definition. First, we consider the 1-st row:

ε1 = (Ay)1−b1 =−ε
y2−2y1

∆x2 +
y2

2∆x
−0 =−ε

y2−2y1 + y0

∆x2 +
y2− y0

2∆x
− (−εy′′(x1)+y′(x1))

The last equation follows from using the boundary condition y(0) = y(x0) = 0 and −εy′′(x1)+
y′(x1) = 0. Next we use Taylor expansions for y(x2) and y(x0) around x1:

y0 = y(x0) = y(x1−∆x) = y1−∆x y′(x1)+
∆x2

2
y′′(x1)−

∆x3

3!
y′′′(x1)+O(∆x4)

y2 = y(x2) = y(x1 +∆x) = y1 +∆x y′(x1)+
∆x2

2
y′′(x1)+

∆x3

3!
y′′′(x1)+O(∆x4)



Substitution of the expressions of y0 and y2 into the expression for ε1, gives

ε1 = O(∆x2).

For j ∈ {2, . . . ,n−1}, it follows

ε j = (Ay) j−b j =−ε
yi+1−2y j + y j−1

∆x2 +
y j+1− y j−1

2∆x
−0

−ε
yi+1−2y j + y j−1

∆x2 +
y j+1− y j−1

2∆x
− (−εy′′(x j)+ y′(x j))

Again we use Taylor expansions for y j−1 and y j+1 around x j:

y j−1 = y(x j−1) = y(x j−∆x) = y j−∆x y′(x j)+
∆x2

2
y′′(x j)−

∆x3

3!
y′′′(x j)+O(∆x4)

y j+1 = y(x j+1) = y(x j +∆x) = y j +∆x y′(x j)+
∆x2

2
y′′(x j)+

∆x3

3!
y′′′(x j)+O(∆x4),

to arrive at

ε j = (Ay) j−b j =−ε
yi+1−2y j + y j−1

∆x2 +
y j+1− y j−1

2∆x
− (−εy′′(x j)+ y′(x j)) = O(∆x2).

The same procedure (Taylor series) is applied to εn with bn =
ε

∆x2 − 1
2∆x = ε

yn+1
∆x2 −

yn+1
2∆x (using

yn+1 = 1), to arrive at

εn = (Ay)n−bn =−ε
yn+1−2yn + yn−1

∆x2 +
yn+1− yn−1

2∆x
− (−εy′′(xn)+ y′(xn)) = O(∆x2)

From this analysis, it can be concluded that the local truncation error is of order O(∆x)2 as
∆x→ 0.

e We set w j = r j, hence w j−1 = r j−1 and w j+1 = r j+1, hence w j+1 = rw j = r2w j. Substitution
into the finite difference equation (5), gives

−ε
r j+1−2r j + r j−1

∆x2 +
r j+1− r j−1

2∆x
= 0.

Division by r j−1 (r = 0 is a non-interesting trivial solution), gives

−ε
r2−2r+1

∆x2 +
r2−1
2∆x

= 0, for r 6= 0,

which is what we were supposed to derive. Subsequently, using r2− 2r + 1 = (r− 1)2 and

r2−1 = (r+1)(r−1), immediately reveals that r = 1 and r =
∆x
2ε

+1
1− ∆x

2ε

, if 1− ∆x
2ε
6= 0.

f The exact solution, see assignment 2b, rules out any oscillatory behaviour. The solution consists

of two non-trivial modes: r = 1 and r =
∆x
2ε

+1
1− ∆x

2ε

. Since w j = r j, the first solution (r = 1) is a

constant mode. The second mode varies over j, it permits oscillatory behaviour if r < 0, hence
in order to prevent any oscillatory behaviour, we have to require that r > 0. Since ε > 0 and
∆x > 0, the numerator is always positive, whereas the denominator is given by 1− ∆x

2ε
, which

is positive if and only if 1− ∆x
2ε

> 0, hence we require that ∆x < 2ε to prevent any spurious
oscillatory behaviour.

3 We consider the generic initial value problem

y′ = f (t,y(t)), y(t0) = y0, (8)



of which we approximate the solution by the following predictor-corrector method
w∗ = wn +

∆t
2

f (tn,wn),

wn+1 = wn +∆t f (tn +
1
2

∆t,w∗).

(9)

a We use the definition of the local truncation error at time-step tn+1

τn+1(∆t) :=
yn+1− zn+1

∆t
, (10)

where yn+1 represents the (exact) solution to the initial value problem and zn+1 represents the
numerical approximation using the (exact) solution yn := y(tn) from the previous time-step.
The solution at tn+1 is expressed by the use of a Taylor series about tn:

yn+1 = y(tn +∆t) = yn +∆ty′(tn)+
∆t2

2
y′′(tn)+

∆t3

3!
y′′′(ξ ),

for a ξ ∈ (tn, tn+1) from Taylor’s Theorem. Next, we express zn+1 from yn:

z∗ = yn +
∆t
2

f (tn,yn),

zn+1 = yn +∆t f (tn +
∆t
2
,z∗) = yn +∆t f (tn +

∆t
2
,yn +

∆t
2

f (tn,yn)) =

yn +∆t( f (tn,yn)+
∆t
2

∂ f (tn,yn)

∂ t
+

∆t
2

f (tn,yn)
∂ f (tn,yn)

∂y
+O(∆t2)).

(11)

The latest steps follow from application of Taylor’s Theorem for multivariate functions. Since
y′ = f (t,y(t)), we have

y′′(t) =
d
dt

f (t,y(t)) =
∂ f (t,y(t))

∂ t
+

∂ f (t,y(t))
∂y

y′(t) =
∂ f (t,y(t))

∂ t
+

∂ f (t,y(t))
∂y

f (t,y(t)).

This implies that the second equation in (11) can be written as

zn+1 = yn +∆t(y′(tn)+
∆t
2

y′′(tn)+O(∆t2)) = yn +∆ty′(tn)+
∆t2

2
y′′(tn)+O(∆t3).

Hence equation (10) becomes

τn+1(∆t)=
yn+1− zn+1

∆t
=

yn +∆ty′(tn)+ ∆t2

2 y′′(tn)+ ∆t3

3! y′′′(ξ )− (yn +∆ty′(tn)+ ∆t2

2 y′′(tn)+O(∆t3))

∆t
=O(∆t2).

This is exactly what we were supposed to prove.

b In order to assess stability of the numerical method, we first derive the amplification factor by
the use of the test equation y′ = λy. Let wn be the numerical approximation of the (exact)
solution yn, then

w∗ = wn +
∆t
2

λwn,

wn+1 = wn +∆tλw∗ = wn +∆tλ (wn +
∆t
2

λwn) = wn(1+λ∆t +
λ 2∆t2

2
).

Since Q(λ∆t) := wn+1
wn

, it follows directly that

Q(λ∆t) = 1+λ∆t +
λ 2∆t2

2
.



Subsequently, we compute the eigenvalues of the matrix, A, in our system of equations, where
it can be seen easily that we can write the system in the form

y′ =
(
−2 1
1 −2

)
y = Ay

The eigenvalues of A are computed by setting

det(A−λ I) = 0,

which give λ1 =−1 and λ2 =−3, hence λ (A) = {−1,−3}. Stability of the numerical solution
is obtained by requiring

|Q(λ∆t)| ≤ 1.

In the current case, the eigenvalues are real, this implies Q(λ∆t) ∈ R, and that we obtain

−1≤ 1+λ∆t +
λ 2∆t2

2
≤ 1.

This implies that

(I) : 0≤ 2+λ∆t +
λ 2∆t2

2

(II) : λ∆t +
λ 2∆t2

2
≤ 0.

Note that λ∆t = 0 implies that inequality (I) is satisfied, further, note that the discriminant is
always negative, which implies that there are no real-valued roots in case of equality. Hence
inequality (I) is always satisfied.

The second inequality is processed further. Note that λ∆t can be factored out, and note that
λ∆t < 0, this gives

1+
λ∆t

2
≥ 0⇐⇒ 1− |λ |∆t

2
⇐⇒ ∆t ≤ 2

|λ |
.

Since λ1 =−1 and λ2 =−3 are the eigenvalues of A, the larger eigenvalue in absolute value is
the more restrictive one, hence stability of the numerical solution is warranted if

∆t ≤ 2
3
.

c In part a of this assignment, we proved that the local truncation error converges to zero as the
time-step is sent to zero, in other words, we have

τn+1(∆t)−→ 0 as ∆t −→ 0.

Therefore, according to the definition of consistency, the method that we currently consider is
consistent.

We further observed that the method is stable if ∆t ≤ 2
3 , hence sending ∆t to zero makes the

method stable.

Lax’ Theorem says that a consistent, stable method converges. Therefore, as ∆t is sent to zero,
the method converges, which amounts to the fact that the glocal truncation error

εn+1(∆t) = yn+1−wn+1 −→ 0 as ∆t −→ 0.

Therewith, the answer is affirmative.



d The use of y1(0) = 1, and y2(0) = 1, implies that the predictor w∗ is given by

w∗ = w0 +
∆t
2

Aw0 =

(
1
1

)
+

1
2
· 1

2

(
−2 1
1 −2

)(
1
1

)
=

(
1
1

)
− 1

4

(
1
1

)
=

3
4

(
1
1

)
.

Subsequently, for the corrector w1, we get

w1 =w0+∆tAw∗=
(

1
1

)
+

1
2

(
−2 1
1 −2

)
· 3
4

(
1
1

)
=

(
1
1

)
+

3
8

(
−2 1
1 −2

)(
1
1

)
=

(
1
1

)
− 3

8

(
1
1

)
=

5
8
·
(

1
1

)
.

e The amplification factor of Heun’s (Modified Euler) method is given by

Q(λ∆t) = 1+λ∆t +
λ 2∆t2

2
.

Hence, this amplification is identical to the amplification method that we derived in assignment
3b. Therefore, the stability properties of Heun’s method and the method that we analysed earlier
are identical (hence application to the problem that we considered earlier, gives ∆t ≤ 2

3 again).


