Technische Universiteit Delft

Fac. Elektrotechniek, Wiskunde en Informatica

Examination Option Valuation Methods, Wi 3405TU

Friday January 26nd 2018, 9:00 - 11:00 (2 hours examination)

- 1. a. Describe an Asian fixed strike call option, with a weekly updated arithmetic average, in terms of contract details. For which financial reason would a writer want to sell such an Asian option; and for which reason would an investor wish to buy it?
 - b. Let $C_1^{fix}(S,t)$ and $P_1^{fix}(S,t)$ denote prices of an Asian fixed strike call and put, respectively, with strike price E. Let $C_2^{float}(S,t)$ and $P_2^{float}(S,t)$ denote prices of a floating strike Asian call and put, and let $C_3(S,t)$ and $P_3(S,t)$ denote prices of a European call and put option, with strike price E. All options have expiry date T. Show that

$$C_1^{fix}(S,t) + C_2^{float}(S,t) - C_3(S,t) = P_1^{fix}(S,t) + P_2^{float}(S,t) - P_3(S,t).$$

2. Consider the following partial differential equation, for unknown $u(x,\tau)$,

$$\begin{array}{rcl} \frac{\partial u}{\partial \tau} & = & \frac{\partial^2 u}{\partial x^2}, \ 0 \le x \le L, \ 0 \le \tau \le T. \\ u(x,0) & = & b(x), \\ u(0,\tau) & = & 0, \ u(L,\tau) = c(\tau), \end{array} \tag{1}$$

with b(x) and $c(\tau)$ pre-specified functions. We discretize this equation on a computational grid with N_x points in x-direction and N_τ points in τ -direction, to find $U_j^i \approx u(jh, ik)$ by the Crank-Nicolson discretization, with time index $0 \le i \le N_\tau$ and spatial index $0 \le j \le N_x$, giving

$$2(1+\nu)U_i^{i+1} = \nu U_{i+1}^{i+1} + \nu U_{i-1}^{i+1} + \nu U_{i+1}^i + 2(1-\nu)U_i^i + \nu U_{i-1}^i$$
 (2)

with $\nu = k/h^2$, and the mesh sizes $h = 1/N_x$ and $k = 1/N_\tau$.

- a. Write down the Crank-Nicolson discretization as a matrix equation, $\hat{B}\mathbf{U}^{i+1} = \hat{F}\mathbf{U}^i + \mathbf{r}^i$, for $0 \le i \le N_t 1$, by giving the details of the matrices \hat{B}, \hat{F} and of vector \mathbf{r}^i .
- b. When we deal with the Black-Scholes equation with r=0 and $\tau=T-t$, i.e.,

$$\frac{\partial u}{\partial \tau} = \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 u}{\partial S^2},$$

but with the same boundary and initial condition as in (1), how would the matrices and vector that were obtained under 2a. change?

- c. Apply the von Neumann stability analysis to equation (2), based on $U_j^i = \xi^i e^{\mathbf{i}\beta jh}$ (with **i** the unit imaginary number). Show that the method is unconditionally stable.
- **3.** The following Matlab code is given:

- a. What is the computational technique in this Matlab code and what is computed? Explain the parameters u, d, p in the method.
- b. Adapt the Matlab code to value an American put option, and explain, in pseudo-code, how the coordinates of the early-exercise boundary can also be determined as output.
- c. Describe how to value a down-and-out barrier put option, with barrier level B=1, by the method from the above Matlab code, and adapt the code accordingly.

Place your name and study number on each page with solutions.