

Exam part 1 Real Analysis (TW2090) 6-11-2017; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

- 1. Let (M,d) and (N,ρ) be metric spaces and let $f:M\to N$ be a function.
- (5) a. Complete the following definition: f is continuous in $x \in M$ if
- (10) b. Assume that f is continuous in $x \in M$. Let (x_n) be a sequence in M with $x_n \stackrel{d}{\to} x$. Show that $f(x_n) \stackrel{\rho}{\to} f(x)$.
- (5) 2. a. Let (M,d) be a metric space. Complete the following definition: a subset $A\subseteq M$ is called *totally bounded* if ...
- (10) b. Give an example of a metric space (M, d) and a bounded subset $A \subseteq M$ which is not totally bounded. As always: prove all your assertions.
 - 3. Let (M, d) be a metric space.
- (5) a. Give the definition of the closure \overline{A} of a set $A \subseteq M$.
- (10) b. Using only the definition of the closure, prove the following equivalence for a set $A \subseteq M$: $\overline{A} = M \iff$ for all $x \in M$ and for all $\varepsilon > 0$ there exists a $y \in A$ such that $d(x,y) < \varepsilon$.

For a set $A \subseteq M$ and $\varepsilon > 0$ we define

$$A(\varepsilon) = \{x \in M : \exists y \in A \text{ such that } d(x, y) < \varepsilon\}.$$

- (5) c. Show that $A(\varepsilon)$ is open.
 - Let (A_n) be a sequence of subsets of M such that for all $n \ge 1$ one has $A_n \subseteq A_{n+1}$ and $\overline{\bigcup_{n \ge 1} A_n} = M$.
- (6) d. Use (b) to show that for each $\varepsilon > 0$ one has $M = \bigcup_{n \ge 1} A_n(\varepsilon)$.
- (6) e. From now on assume that M is compact. Show that for every $\varepsilon > 0$ there exists an $n \ge 1$ such that $M = A_n(\varepsilon)$.
 - 4. Let X be a nonempty set and let B(X) be the vector space of bounded functions $f: X \to \mathbb{R}$. On B(X) we define $||f||_{\infty} = \sup_{x \in X} |f(x)|$.
- (6) a. Show that $\|\cdot\|_{\infty}$ is a norm on B(X).
- (12) b. Prove that $(B(X), \|\cdot\|_{\infty})$ is complete.
- (10) 5. Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that for every integer $n\geq 0$,

$$\int_0^1 f(x)x^n dx = 0.$$

Show that f = 0.

Hint: First explain why for all polynomials p one has $\int_0^1 f(x)p(x)dx = 0$ and then use Weierstrass' theorem to find that $\int_0^1 (f(x))^2 dx = 0$.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.

- 1. a. for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $y \in M$: $d(x,y) < \delta$ implies $\rho(f(x),f(y)) < \varepsilon$.
 - b. Let $\varepsilon > 0$. Since f is continuous we can find $\delta > 0$ such that for all $y \in M$: $d(x,y) < \delta$ implies $\rho(f(x),f(y)) < \varepsilon$. Since $x_n \to x$, we can find $N \in \mathbb{N}$ such that for all $n \geq N$, $d(x,x_n) < \delta$. It follows that $\rho(f(x),f(x_n)) < \varepsilon$.
- 2. a. ... for all $\varepsilon > 0$ there exist $x_1, \ldots, x_n \in M$ such that $A \subseteq \bigcup_{i=1}^n B_{\varepsilon}(x_i)$.
 - b. Let $M = \mathbb{R}$ with the discrete metric. Then $B_2(0) = \mathbb{R}$ thus \mathbb{R} is bounded. However, letting $\varepsilon = 1$, we find that for every $x \in \mathbb{R}$ we have $B_1(x) = \{x\}$. Thus for any choice $x_1, \ldots, x_n \in \mathbb{R}$, $\bigcup_{i=1}^n B_{\varepsilon}(x_i) = \{x_1, \ldots, x_n\}$ is not equal to \mathbb{R} . This shows that \mathbb{R} with the discrete metric is bounded but not totally bounded.
- 3. a. This is the smallest closed set in M which contains A. In other words: $\overline{A} = \bigcap \{F \subseteq M : A \subseteq F \text{ and } F \text{ is closed}\}.$
 - b. \Leftarrow using contraposition. Assume $\overline{A} \neq M$. We will show that there exist $x \in M$ and $\varepsilon > 0$ such that for all $y \in A$, $d(x,y) \geq \varepsilon$. Choose $x \in M \setminus \overline{A}$. Since \overline{A} is closed we have that $M \setminus \overline{A}$ is open. Thus we can $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq M \setminus \overline{A}$. Then we find $A \subseteq \overline{A} \subseteq M \setminus B_{\varepsilon}(x)$. Thus for every $y \in A$, $d(x,y) \geq \varepsilon$.
 - \Rightarrow . Assume that for all $x \in M$ and for all $\varepsilon > 0$ there exists a $y \in A$ such that $d(x,y) < \varepsilon$. We will show that $\overline{A} = M$. For this choose $x \in M$ arbitrary and let $F \subseteq M$ be a closed set such that $A \subseteq F$. It suffices to show that $x \in F$. If $x \in M \setminus F$, then since $M \setminus F$ is open we can find an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq M \setminus F$. Therefore, $B_{\varepsilon}(x) \cap A \subseteq B_{\varepsilon}(x) \cap F = \emptyset$. However, from the assumption we know that there exists a $y \in A$ such that $d(x,y) < \varepsilon$. Thus $y \in B_{\varepsilon}(x) \cap A$ and hence the latter is nonempty. This contradiction implies that we must have $x \in F$.
 - c. Let $x \in A_{\varepsilon}$. We need to find a $\delta > 0$ such that $B_{\delta}(x) \subseteq A_{\varepsilon}$. Choose $y \in A$ such that $d(x,y) < \varepsilon$. Let $\delta = \varepsilon d(x,y)$. Then $\delta > 0$ and for all $z \in B_{\delta}(x)$ we have by the triangle inequality,

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \delta = \varepsilon.$$

- d. Fix $\varepsilon > 0$. Choose $x \in M$ arbitrary. Let $y \in \bigcup_{n \geq 1} A_n$ be such that $d(x,y) < \varepsilon$. Then we can find $n \in \mathbb{N}$ such that $y \in A_n$. Thus $y \in A_n(\varepsilon)$. Therefore, we can conclude $x \in \bigcup_{n \geq 1} A_n(\varepsilon)$.
- e. By d and c we now that $(A_n(\varepsilon)_{n\geq 1})$ is an open cover of M. The compactness of M now implies that it has a finite subcover. Therefore, there exists a finite set $F\subseteq \mathbb{N}$ such that $M\subseteq \bigcup_{n\in F}A_n(\varepsilon)$. Since $A_n\subseteq A_{n+1}$ we also have $A_n(\varepsilon)\subseteq A_{n+1}(\varepsilon)$. Taking $N=\max F$, we find that $\bigcup_{n\in F}A_n(\varepsilon)=A_N(\varepsilon)$. We can now conclude that $M=A_N(\varepsilon)$.
- 4. a. Let $f \in B(X)$. Since f is bounded we know that for every $x \in X$, $0 \le |f(x)| \le M$. Therefore, $||f||_{\infty} = \sup_{x \in X} |f(x)|$ is a number in $[0, \infty)$. We check the remaining properties of a norm. If f = 0, then clearly, $||f||_{\infty} = 0$. Conversely, if $||f||_{\infty} = 0$, then $\sup_{x \in X} |f(x)| = 0$, thus |f(x)| = 0 for all $x \in X$, thus f(x) = 0 for all $x \in X$. If $\lambda \in \mathbb{R}$, then

$$\|\lambda f\|_{\infty} = \sup_{x \in X} |\lambda f(x)| = \sup_{x \in X} |\lambda| \left| f(x) \right| = |\lambda| \sup_{x \in X} |f(x)| = |\lambda| \left\| f \right\|_{\infty}.$$

where the numbers $|\lambda|$ can be pulled out of the supremum since it is in $[0, \infty)$. Finally, if $f, g \in B(X)$, then for all $x \in X$,

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}.$$

Therefore, $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

- b. Finally, we prove the completeness of B(X). Let $(f_n)_{n\geq 1}$ be a Cauchy sequence in B(X).
- (i): We claim that for all $x \in X$, $(f_n(x))_{n \ge 1}$ is a Cauchy sequence in \mathbb{R} . Indeed, let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that for all $m, n \ge N$, $||f_n f_m||_{\infty} < \varepsilon$. Then for all $x \in X$, for all $m, n \ge N$,

$$|f_m(x) - f_m(x)| < ||f_n - f_m||_{\infty} < \varepsilon \quad (*)$$

which proves the claim. By the completeness of \mathbb{R} we can define $f: X \to \mathbb{R}$ as $f(x) = \lim_{n \to \infty} f_n(x)$.

- (ii): Since $(f_n)_{n\geq 1}$ is a Cauchy sequence in B(X) it is bounded in B(X). Choose M such that for all $n\geq 1$, $||f_n||_{\infty}\leq M$. Then for all $x\in X, |f_n(x)|\leq M$. Thus $f\in B(X)$.
- (iii): It remains to show that $f_n \to f$ in B(X). Let $\varepsilon > 0$. Choose N as in step (i). Letting $m \to \infty$ in (*) we obtain that for all $n \ge N$, for all $x \in X$,

$$|f(x) - f_n(x)| \le \varepsilon.$$

Therefore, for all $n \geq N$, $||f - f_n||_{\infty} \leq \varepsilon$.

5. Let $p(x) = \sum_{m=0}^{M} a_m x^m$ be a polynomial. Then by linearity of the integral we can write

$$\int_0^1 f(x)p(x)dx = \sum_{m=0}^M a_m \int_0^1 f(x)x^m dx = 0.$$

By Weierstras' theorem we can find polynomials $(p_j)_{j\geq 1}$ such that $p_j\to f$ uniformly on [0,1]. Therefore, by the above observation and the standard properties of integrals, we have

$$\int_{0}^{1} (f(x))^{2} dx = \left| \int_{0}^{1} (f(x))^{2} dx - \int_{0}^{1} f(x) p_{j}(x) dx \right|$$

$$= \left| \int_{0}^{1} (f(x))^{2} - f(x) p_{j}(x) dx \right|$$

$$\leq \int_{0}^{1} |(f(x))^{2} - f(x) p_{j}(x)| dx$$

$$= \int_{0}^{1} |f(x)| |f(x) - p_{j}(x)| dx$$

$$\leq ||f||_{\infty} ||f - p_{j}||_{\infty}.$$

Since the right-hand side tends to zero as $j \to \infty$, we must have $\int_0^1 (f(x))^2 dx = 0$. Since f is continuous it follows that f = 0.