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. Let (M, d) and (N, p) be metric spaces and let f : M — N be a function.

a. Complete the following definition: f is continuous in x € M if ....

b. Assume that f is continuous in z € M. Let (z,) be a sequence in M with x,, % 2. Show that

() 5 f(2).

. a. Let (M,d) be a metric space. Complete the following definition: a subset A C M is called totally

bounded if ...

b. Give an example of a metric space (M, d) and a bounded subset A C M which is not totally bounded.
As always: prove all your assertions.

. Let (M, d) be a metric space.

a. Give the definition of the closure A of a set A C M.

b. Using only the definition of the closure, prove the following equivalence for a set A C M:
A= M <= for all x € M and for all € > 0 there exists a y € A such that d(z,y) < €.

For a set A C M and £ > 0 we define
A(e) ={z € M : 3y € A such that d(z,y) < €}.
c. Show that A(e) is open.

Let (A,) be a sequence of subsets of M such that for all n > 1 one has 4,, C A,411 and |J A, = M.
n>1

d. Use (b) to show that for each € > 0 one has M = |J A, (e).

n>1

e. From now on assume that M is compact. Show that for every € > 0 there exists an n > 1 such that
M = A, (e).

. Let X be a nonempty set and let B(X) be the vector space of bounded functions f : X — R. On B(X)

we define || f||co = sup |f(z)]-
reX

a. Show that || - || is @ norm on B(X).
b. Prove that (B(X), || - ||c) is complete.

. Let f:[0,1] — R be a continuous function such that for every integer n > 0,

/0 1 f(z)z"dz = 0.

Show that f = 0.
Hint: First explain why for all polynomials p one has fol f(z)p(x)dz = 0 and then use Weierstrass’

theorem to find that fol(f(x))de =0.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following

formula Total + 10
ota
Grade = ——

rade 10

and rounded in the standard way.

THElEND
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. a. for all € > 0 there exists a ¢ > 0 such that for all y € M: d(z,y) < ¢ implies p(f(x), f(y)) < e.

b. Lete > 0. Since f is continuous we can find § > 0 such that for ally € M: d(z,y) < § implies p(f(z), f(y)) < e.
Since z,, — x, we can find N € N such that for all n > N, d(z,z,) < . It follows that p(f(z), f(zn)) <€

. a. ... for all € > 0 there exist z1,...,2, € M such that A C J]_, Be(x:).

b. Let M = R with the discrete metric. Then B2(0) = R thus R is bounded. However, letting ¢ = 1, we find
that for every & € R we have Bi(z) = {z}. Thus for any choice x1,...,zn € R, UI_; Be(x:) = {z1,..., 20}
is not equal to R. This shows that R with the discrete metric is bounded but not totally bounded.

. a. This is the smallest closed set in M which contains A. In other words: A = (J{F C M : A C F and F'is closed}.

b. <« using contraposition. Assume A # M. We will show that there exist 2 € M and € > 0 such that for all
y € A, d(z,y) > ¢. Choose z € M \ A. Since A is closed we have that M \ A is open. Thus we can ¢ > 0 such
that B.(z) C M \ A. Then we find A C A C M \ B:(z). Thus for every y € 4, d(z,y) > ¢.

=. Assume that for all x € M and for all ¢ > 0 there exists a y € A such that d(z,y) < . We will show

that A = M. For this choose © € M arbitrary and let F C M be a closed set such that A C F. It suffices to

show that z € F. If x € M \ F, then since M \ F is open we can find an € > 0 such that B:(z) C M \ F.

Therefore, B-(x) N A C B.(z) N F = (. However, from the assumption we know that there exists a y € A such

that d(z,y) < e. Thus y € B:(xz) N A and hence the latter is nonempty. This contradiction implies that we must

have x € F.

c. Let z € A.. We need to find a § > 0 such that Bs(z) C A.. Choose y € A such that d(z,y) < €. Let
0 =¢—d(x,y). Then 6 > 0 and for all z € Bs(z) we have by the triangle inequality,

d(z,z) <d(z,y) +d(y,z) < d(z,y) +d=e¢.

d. Fix e > 0. Choose z € M arbitrary. Let y € |J,,», An be such that d(x,y) < e. Then we can find n € N such
that y € A,,. Thus y € A, (g). Therefore, we can conclude x € |J Ax(e).
n>1
e. By d and ¢ we now that (A, (¢),>1 is an open cover of M. The compactness of M now implies that it has a
finite subcover. Therefore, there exists a finite set F' C N such that M C |, An(e). Since An C Apy1 we
also have An(e) C Ant1(e). Taking N = max F, we find that |, An(e) = An(e). We can now conclude
that M = AN(E).

. a. Let f € B(X). Since f is bounded we know that for every x € X, 0 < |f(x)|] < M. Therefore, ||f|lsc =
sup,cx |f(z)| is a number in [0,00). We check the remaining properties of a norm. If f = 0, then clearly,
| fllc = 0. Conversely, if || f||cc = 0, then sup,y |f(x)| =0, thus |f(z)| = 0 for all x € X, thus f(x) = 0 for
all x € X. If A € R, then

[Afllee = sup |Af(z)| = sup [A][f(2)] = [A| sup |f(z)] = [A[]|f]|oo-
zeX reX reX

where the numbers |\| can be pulled out of the supremum since it is in [0,00). Finally, if f,g € B(X), then
for all z € X,

[f (@) + g(@)| < [f (@) + lg@)] < [[flloo + llglloo-
Therefore, [|f + glloo < [[fllec + [lglloo-

b. Finally, we prove the completeness of B(X). Let (fn)n>1 be a Cauchy sequence in B(X).
(i): We claim that for all © € X, (fn(2z))n>1 is a Cauchy sequence in R. Indeed, let € > 0. Choose N € N such
that for all m,n > N, ||fn — fml|lec < €. Then for all z € X, for all m,n > N,

[fm () = fm (@) < | fn = fmlloo <& (%)

which proves the claim. By the completeness of R we can define f : X — R as f(z) = limn—oo fn ().
(ii): Since (fn)n>1 is a Cauchy sequence in B(X) it is bounded in B(X). Choose M such that for all n > 1,
[ fnlloo < M. Then for all z € X, | fn(z)| < M. Therefore, letting n — oo, we find that for all z € X, | f(z)| < M.
Thus f € B(X).
(iii): It remains to show that f, — f in B(X). Let € > 0. Choose N as in step (i). Letting m — oo in (x) we
obtain that for all n > N, for all x € X,

|f(x) = fu(@)] <e.
Therefore, for all n > N, ||f — folleo < e.

See also the next page.
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5. Let p(z) = ZM amz"™ be a polynomial. Then by linearity of the integral we can write

/0 o) = ﬁj: am /0 " ey = 0.

By Weierstras’ theorem we can find polynomials (p;);>1 such that p; — f uniformly on [0, 1]. Therefore, by the
above observation and the standard properties of integrals, we have

/ dm—‘/ d:cf/f z)p;(x )dx‘
=| [ 0@y - s @as]
/| (2)py () do

- / F@)|1f (@) - py () da
< 1 flloellf = sll

Since the right-hand side tends to zero as j — oco, we must have fol(f(:c))de = 0. Since f is continuous it follows
that f = 0.

THE END



