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. Define the probability density function

601
IN())

where o and [ are strictly positive parameters and I' is the Gamma-function.
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(a) Verify that f is of exponential family type.

(b) Suppose Xj,..., X, are independent and identically distributed with density f.
Derive a sufficient statistic for («, 8) and argue why it is complete. Hint: natural
parameter space.

(c¢) We now consider the Bayesian viewpoint. Suppose X, ..., X, are independent
with density f, conditional on 8. Assume 8 ~ Ezp(2). Derive an expression for
the posterior density of 3, while assuming « is fixed (that is, known).

(d) Now suppose also « is endowed with a prior distribution: assume a ~ Ezp(1).
Give the steps of an MCMC-algorithm to draw from the posterior of («, 3).

(a) Suppose X ~ N (0,%). Derive an expression for the Fisher-information I(1)).
Note that v > 0 is the variance of the Normal distribution, so there is no square
appearing.
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(b) Suppose h : (0,00) — (0, 00) is bijective, differentiable, with differentiable inverse.
Show that if we parametrise by h(1) instead of ¢, then the Fisher information

satisfies I;,(¢)) = W' (¢)?I(h(v))). Here I; (1)) denotes the Fisher-information when
h(v) is used as parametrisation.

3. Assume p pairs of observations (X1,Y1),...,(X,,Y,), where all pairs are assumed con-
ditionally independent upon parameters 6, ...,6,. We further assume X; ~ N (0, 1)
and Y; | X; =2 ~ N (6;z,1).

(a) Following a Bayesian approach, assume that the parameters are random quantities
themselves. Hence, write the parameters as ©4, ..., 0, and assume these random
variables are independent with N (0, 72)-distribution. Find The Bayes estimator
for ©; under squared error loss.

(b) Determine EY;? and use this result to define a method of moments estimator for

72,

(c) Derive empirical Bayes estimators for 6; (i € {1,...,p}) by combining parts (a)
and (b).

(d) Now consider a frequentist approach and derive the maximum likelihood estimator

for 6; (i € {1,...,p})

4. Suppose Xi,..., X, are identically distributed and independent, conditional on the
parameter ©. Assume we endow © with a prior distribution.

(a) For ¢ > 0 consider the loss function
L.0,a) =¥(c(0 —a)) with VU(r)=e€"—x—1.

We consider the Bayes rule for estimating 6 using L.. What is considered more
costly, under- or over estimation of 67

(b) Show that the Bayes rule satisfies
1
dc(.Il, Ce ,SL’n) = —E IOg / €_Cef@|X17m7Xn (91 | L1,y ... ,SL’n)d 8

(c) What is the Bayes rule in the limit where we let ¢ | 07 Sketch the main argument,
you don’t have to be fully rigorous.



