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Using books or notes is not allowed at the exam.
Unless stated diferently, always add an explanation to your answer.

1. Let g be a density function supported on [0, 1] (i.e. its density is zero
outside [0, 1]). Denote µ =

∫
xg(x)dx and σ2 =

∫
(x− µ)2g(x)dx. In this

exercise we consider g fixed and known.

Let θ ∈ [0, 1] and define the probability density

f(x | θ) =

{
θ + (1− θ)g(x) if x ∈ [0, 1]

0 if x 6∈ [0, 1]
.

Assume X1, . . . , Xn are independent, each with density f .

(a) [1 pt]. Give an expression for the score-function (this is the derivative
of the log-likelihood).

(b) [1 pt]. Show that EθX1 = Ψµ(θ), with Ψµ(θ) = µ+ (1− µ)θ.

(c) [2 pt]. Define the estimator Θ̂n by the relation X̄n = Ψµ(Θ̂n). Derive
an expression for Θ̂n and show it is unbiased for θ.

(d) [3 pt]. Using the central limit theorem, give the limiting distribution
of
√
n(Θ̂n − θ) under Pθ and show that if µ < 1

lim
n→∞

Pθ(Θ̂n < 0) = 0.

(e) [2 pt]. In the remainder of the exercise we assume n = 1, so just one
observation X1. Show that the maximum likelihood estimator is given
by

Θ̂MLE =

{
0 if g(X1) > 1

1 if g(X1) < 1

(f) [2 pt]. We shift perspective to the Bayesian view. Hence we consider
X1 | Θ = θ ∼ f(x | θ) and employ a prior on the parameter θ that is
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supported on [0, 1] with density denoted by fΘ. Show that the posterior
density satisfies

fΘ|X1
(θ | x) =

f(x | θ)fΘ(θ)

π1 + (1− π1)g(x)
1[0,1](θ).

where π1 is the prior mean.

(g) [2 pt]. Suppose the prior on Θ is taken to be the uniform distribution
on [0, 1]. Express the posterior mean in terms of g(X1).

2. Let θ ∈ (0,∞) be an unknown parameter and X be a random variable such
that EθX = θ and varθX = ν(θ), where ν(θ) is known and specified below.
Consider estimation of θ by a decision rule within the class D defined by

D = {da(X) = aX, a ∈ (0, 1]}.

Assume squared error loss, that is, L(θ, da) = (θ − aX)2.

(a) [3 pt]. For ν(θ) = θ2, calculate the risk function of da, and show that
there is a value of a which is optimal, no matter the value of θ.

(b) [1 pt]. Show that d1 is inadmissible (for the given loss-function).
Hint: consider also d1/2.

(c) [3 pt]. Suppose ν(θ) = θk where k is a positive integer. Show that the
Bayes risk of the decision rule da is given by a2 k! + 2(a− 1)2, when Θ
has prior density fΘ(θ) = e−θ1[0,∞)(θ). In addition, compute the Bayes
decision rule.

You can use the fact that
∫∞

0 xne−xdx = n! for positive integers n.

(d) [1 pt]. Suppose again that ν(θ) = θ2. Are the minimax rule and Bayes
rule (that you derived in part (c)) the same?

(e) [1.5 pt]. Show that the Bayes rule does not depend on the chosen prior
distribution on Θ if ν(θ) = θ2.
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3. Consider the following hierarchical model

X1, . . . , Xn | Θ = θ
ind∼ Pois (θ)

Θ ∼ Ga (α, β) ,

where Ga (α, β) denotes the Gamma-distribution with parameters α and
β. That is,

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ1[0,∞)(θ),

where Γ denotes the Gamma function. Recall that under the specified
model Pθ(Xi = x) = e−θ θ

x

x! , when x ∈ {0, 1, . . .}.

(a) [3 pt]. Show that the posterior distribution of Θ is a Gamma distribu-
tion. Specify its parameters.

(b) [2 pt]. Show that the marginal density of X = (X1, . . . , Xn) equals

fX(x) =
βαΓ(α + s)

Γ(α)
∏n

i=1(xi!)(β + n)α+s
,

where s =
∑n

i=1 xi.

(c) [3 pt]. Assume α = 2 and that we further endow β with a prior
distribution with density p(β) = e−β1[0,∞)(β). Give the steps of the
Gibbs sampler for sampling from the posterior distribution of (θ, β).

4. Suppose X ∼ Pois (θ).

(a) [2 pt].Verify that ϕ(X) is an unbiased estimator for e−3θ if

∞∑
k=0

ϕ(k)
θk

k!
= e−2θ.

(b) [2 pt]. Prove that (−2)X is UMVU for θ. Hint: You may use the trivial
fact that X is a complete and sufficient statistic for θ.
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Solutions

1. (a) The loglikelihood is given by

`(θ) =
n∑
i=1

log f(xi | θ).

Hence

s(θ) =
n∑
i=1

1− g(x)

θ + (1− θ)g(x)
.

(b)

Eθ = θ + (1− θ)
∫
xg(x)dx = θ + (1− θ)µ = µ+ (1− µ)θ.

(c) We have (1− µ)Θ̂n + µ = X̄n. This gives

Θ̂n =
X̄n − µ
1− µ

.

We then have

Eθ Θ̂n =
EθX̄n − µ

1− µ
=
θ + (1− θ)µ− µ

1− µ
= θ.

(d) Note that

varθ Θ̂n =
σ2

n(1− µ)2
.

By the CLT we have

√
n(Θ̂n − θ)

w−→ N(0, σ2/(1− µ)2).

Hence

Pθ(Θ̂n < 0) = Pθ
(√

n
1− µ
σ

(Θ̂n − θ) < −
√
n

1− µ
σ

θ

)
≈ Φ

(
−
√
n

1− µ
σ

θ

)
.

(e) The likelihood is L(θ) = θ + (1− θ)g(x). Hence L′(θ) = 1− g(x). So
if g(x) > 1 the likelihood is decreasing and the maximiser is at 0; if
g(x) < 1, then the likelihood is increasing and then the maximiser is
at 1.
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(f) The posterior density satisfies

fΘ|X(θ | x) ∝ fΘ(θ)f(x | θ).

The normalising constant is obtained by integrating the RHS over θ
and equals henceforth π1 + (1− πi)g(x).

(g) As π1 = 1/2 the posterior mean equals∫ 1

0 θ
2d θ + g(X1)

∫ 1

0 θ(1− θ)d θ
1/2 + g(X1)/2

=
1/3 + g(X1)/6

1/2 + g(X1)/2
=

2 + g(X1)

3 + 3g(X1)
.

2. (a) First note that

R(θ, da) = Eθ(da − θ)2 = Eθ(aX − θ)2.

Using the bias-variance decomposition of the Mean-Squared-Error, this
is seen to be equal to

(Eθ(aX − θ))2 + varθ(aX) = (a− 1)2θ2 + a2θ2 = (2a2 − 2a+ 1)θ2.

This is a strictly convex function in a and minimised for a = 1/2.

(b) When a = 1/2, the risk equals θ2/2, whereas for a = 1 we get risk θ2.
As θ > 0 this implies d1 is inadmissible (for the given loss-function).

(c) The Bayes risk is obtained by weighting the risk with respect to the
prior. Hence

r(fΘ, da) =

∫
R(θ, da)fΘ(θ)d θ

=

∫ ∞
0

(
(a− 1)2θ2 + a2θk

)
e−θd θ

= 2(a− 1)2 + a2k!

The Bayes rule follow upon minimising the Bayes risk over a ∈ (0, 1].
Setting the derivative with respec to a to zero gives 2a − 2 + ak! = 0
and hence a = 2/(2 + k!). The Bayes rule is henceforth given by

dBayes(X) =
2

2 + k!
X.

(d) First note that the result of exercise (a) says that d1/2 is minimax.
From exercise (c) it follows that the Bayes rule and minimax rule are
the same.
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(e) If k = 2 we have

r(fΘ, da) =
(
(a− 1)2 + a2

) ∫ ∞
0

θ2fΘ(θ)d θ

and in that case the Bayes rule is the same for all priors.

3. (a) We have

L(θ | X) =
n∏
i=1

e−θ
θXi

Xi!
∝ e−nθθ

∑n
i=1Xi.

Hence
p(θ | X) ∝ L(θ | X)fΘ(θ) ∝ θa+

∑n
i=1Xi−1e−(b+n).

Hence the posterior for Θ is Ga (a+
∑n

i=1Xi, b+ n).

(b) We have

fX(x) =

∫
fX|Θ(x | θ)fΘ(θ)d θ

=
ba

Γ(a)

1∏n
i=1 xi!

∫
θa+s−1e−(b+n)θd θ

=
baΓ(a+ s)

Γ(a)
∏n

i=1(xi!)(b+ n)a+s

(c) We use Bayesian notation

p(θ, β | x) ∝ e−nθθs︸ ︷︷ ︸
likelihood

× b2θe−bθ︸ ︷︷ ︸
prior on θ | b

× e−b︸︷︷︸
prior on b

.

The Gibbs sampler consists of two steps

• Updating θ given b (and x): this amounts to drawing from the
Ga (2 + s, b+ n) distribution.

• Updating b given θ (and x): this amounts to drawing from a den-
sity proportional to b2e−(θ+1)b, i.e. drawing from the Ga (3, θ + 1)
distribution.

4. (a) The estimator ϕ(X) should satisfy

Eθ ϕ(X) =
∞∑
k=0

ϕ(k)e−θ
θk

k!
= e−θ

∞∑
k=0

ϕ(k)
θk

k!
= e−3θ.
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Hence, we should have

∞∑
k=0

ϕ(k)
θk

k!
= e−2θ.

This is exactly when ϕ(k) = (−2)k.

(b) The estimator
ϕ(X) = (−2)X

is unbiased for e−3θ and depends on the complete and sufficient statistic
X. The result follows from the Lehmann-Scheffé theorem. This is a
terrible estimator!
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