Exam Statistical Inference (WI4455) January 23, 2020, 9.00–12.00

Using books or notes is not allowed at the exam.

Unless stated differently, always add an explanation to your answer.

1. Let g be a density function supported on [0,1] (i.e. its density is zero outside [0,1]). Denote $\mu = \int xg(x)dx$ and $\sigma^2 = \int (x-\mu)^2g(x)dx$. In this exercise we consider g fixed and known.

Let $\theta \in [0, 1]$ and define the probability density

$$f(x \mid \theta) = \begin{cases} \theta + (1 - \theta)g(x) & \text{if } x \in [0, 1] \\ 0 & \text{if } x \notin [0, 1] \end{cases}.$$

Assume X_1, \ldots, X_n are independent, each with density f.

- (a) [1 pt]. Give an expression for the score-function (this is the derivative of the log-likelihood).
 - $\langle (b) [1 \text{ pt}].$ Show that $E_{\theta} X_1 = \Psi_{\mu}(\theta)$, with $\Psi_{\mu}(\theta) = \mu + (\underline{1} \mu)\theta$.
- \mathcal{A} (c) [2 pt]. Define the estimator $\hat{\Theta}_n$ by the relation $\bar{X}_n = \Psi_{\mu}(\hat{\Theta}_n)$. Derive an expression for $\hat{\Theta}_n$ and show it is unbiased for θ .
 - (d) [3 pt]. Using the central limit theorem, give the limiting distribution of $\sqrt{n}(\hat{\Theta}_n \theta)$ under \mathbb{P}_{θ} and show that if $\mu < 1$

$$\lim_{n\to\infty} \mathbb{P}_{\theta}(\hat{\Theta}_n < 0) = 0.$$

(e) [2 pt]. In the remainder of the exercise we assume n = 1, so just one observation X_1 . Show that the maximum likelihood estimator is given by

$$\hat{\Theta}_{\text{MLE}} = \begin{cases} 0 & \text{if } g(X_1) > 1 \end{cases} \quad g(X) = 0 \quad \text{if } x \notin [0,1]$$

$$1 & \text{if } g(X_1) < 1$$

 $X_1 \mid \Theta = \theta \sim f(x \mid \theta)$ and employ a prior on the parameter θ that is

supported on [0, 1] with density denoted by f_{Θ} . Show that the posterior density satisfies

$$f_{\Theta|X_1}(\theta \mid x) = \frac{f(x \mid \theta)f_{\Theta}(\theta)}{\pi_1 + (1 - \pi_1)g(x)} \mathbf{1}_{[0,1]}(\theta).$$

where π_1 is the prior mean.

- (g) [2 pt]. Suppose the prior on Θ is taken to be the uniform distribution on [0,1]. Express the posterior mean in terms of $g(X_1)$.
- 2. Let $\theta \in (0, \infty)$ be an unknown parameter and X be a random variable such that $E_{\theta} X = \theta$ and $var_{\theta} X = \nu(\theta)$, where $\nu(\theta)$ is known and specified below. Consider estimation of θ by a decision rule within the class \mathcal{D} defined by

$$\mathcal{D} = \{ d_a(X) = aX, \ a \in (0, 1] \}.$$

Assume squared error loss, that is, $L(\theta, d_a) = (\theta - aX)^2$.

- (a) [3 pt]. For $\nu(\theta) = \theta^2$, calculate the risk function of d_a , and show that there is a value of a which is optimal, no matter the value of θ .
- (b) [1 pt]. Show that d_1 is inadmissible (for the given loss-function). Hint: consider also $d_{1/2}$.
- (c) [3 pt]. Suppose $\nu(\theta) = \theta^k$ where k is a positive integer. Show that the Bayes risk of the decision rule d_a is given by $a^2 k! + 2(a-1)^2$, when Θ has prior density $f_{\Theta}(\theta) = e^{-\theta} \mathbf{1}_{[0,\infty)}(\theta)$. In addition, compute the Bayes decision rule.

You can use the fact that $\int_0^\infty x^n e^{-x} dx = n!$ for positive integers n.

- (d) [1 pt]. Suppose again that $\nu(\theta) = \theta^2$. Are the minimax rule and Bayes rule (that you derived in part (c)) the same?
- (e) [1.5 pt]. Show that the Bayes rule does not depend on the chosen prior distribution on Θ if $\nu(\theta) = \theta^2$.

3. Consider the following hierarchical model

$$X_1, \dots, X_n \mid \Theta = \theta \stackrel{\text{ind}}{\sim} Pois(\theta)$$

 $\Theta \sim Ga(\alpha, \beta),$

where $Ga(\alpha, \beta)$ denotes the Gamma-distribution with parameters α and β . That is,

$$f_{\Theta}(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} \mathbf{1}_{[0,\infty)}(\theta),$$

where Γ denotes the Gamma function. Recall that under the specified model $P_{\theta}(X_i = x) = e^{-\theta} \frac{\theta^x}{x!}$, when $x \in \{0, 1, \ldots\}$.

- (a) [3 pt]. Show that the posterior distribution of Θ is a Gamma distribution. Specify its parameters.
- (b) [2 pt]. Show that the marginal density of $X = (X_1, \ldots, X_n)$ equals

$$f_X(x) = \frac{b^a \Gamma(a+s)}{\Gamma(a) \prod_{i=1}^n (x_i!)(b+n)^{a+s}}, \qquad (\bowtie_i)$$

where
$$s = \sum_{i=1}^{n} x_i$$
.

- (c) [3 pt]. Assume $\alpha = 2$ and that we further endow β with a prior distribution with density $p(\beta) = e^{-\beta} \mathbf{1}_{[0,\infty)}(\beta)$. Give the steps of the Gibbs sampler for sampling from the posterior distribution of (θ, β) .
- $\sqrt{4}$. Suppose $X \sim Pois(\theta)$.
 - (a) Verify that $\varphi(X)$ is an unbiased estimator for $e^{-3\theta}$ if

$$\sum_{k=0}^{\infty} \varphi(k) \frac{\theta^k}{k!} = e^{-2\theta}.$$

 \int (b) Prove that $(-2)^X$ is UMVU for θ . Hint: You may use the trivial fact that X is a complete and sufficient statistic for θ .