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Exam Statistical Inference (WI4455)
January 24, 2019, 9.00–12.00

Using books or notes is not allowed at the exam.
Unless stated diferently, always add an explanation to your answer.

1. We say that the random variable X has the Shifted Geometric distribution with pa-
rameter θ ∈ (0, 1), denoted by X ∼ SGeo(θ), if it has probability mass function

fX(x | θ) = Pθ(X = x) = (1− θ)xθ, x = 0, 1, . . . .

We have EX = θ/(1 − θ). Suppose X1, . . . , Xn are independent and identically dis-
tributed with Xi ∼ SGeo(θ). For notational convenience, we set Xn = (X1, . . . , Xn).

(a) Give an unbiased estimator for θ. That is, state the estimator and prove it is
unbiased for θ.

(b) Prove that
∑n

i=1Xi is minimal sufficient for θ.

(c) Derive the maximum likelihood estimator for τ = θ/(1− θ).
(d) Suppose n = 1 and we wish to test the hypothesis H0 : θ = 1/2 versus H1 : θ = θ1

with θ1 < 1/2. Show that the optimal test leads to rejecting H0 for large values of
X1. In case we obtain the realisation x = 2, compute the p-value of the test with
X1 as test statistic.

(e) Consider the following hierarchical model

X1, . . . , Xn | Θ = θ
ind∼ SGeo(θ)

Θ ∼ Be(α, β),

where Be(α, β) denotes the Beta-distribution with parameters α and β. That is,

fΘ(θ) =
1

B(α, β)
θα−1(1− θ)β−11[0,1](θ).

The mean of a random variable with the Be(α, β)-distribution is known to be
α/(α + β). Derive the posterior mean estimator for θ. If you wish, you can use
“Bayesian notation” in deriving your answer.

(f) For the model under (e), show that Jeffreys’ prior satisfies

fΘ(θ) ∝
(
θ3 + (1− θ)3

(1− θ)3θ2

)1/2

.

(g) Suppose next, that we parametrise the model in terms of τ = θ/(1− θ). Then the
first line of the hierarchical model under (e) would change to

X1, . . . , Xn | T = τ
ind∼ SGeo(τ/(1 + τ)).
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Suppose that we wish to derive Jeffreys’ prior for T in this model. Explain how
an expression for this prior can be obtained from the result under (f). Note that
you are not asked to actually compute this prior (once you know how to do it, this
computation is just tedious calculus).

(h) Consider the hierarchical model where, conditional on Θ1, . . . ,Θn, X1, . . . , Xn are
(conditionally) independent and furthermore

Xi | Θi = θi
ind∼ SGeo(θi)

Θ1, . . . ,Θn
iid∼ Be(α, β).

Show that

f(X1,...,Xn)(x1, . . . , xn;α, β) =
n∏
i=1

B(α + 1, β + xi)

B(α, β)
.

Explain how this result can be used for obtaining empirical Bayes estimates for α
and β.

(i) Consider the hierarchical model where, conditional on Θ1, . . . ,Θn, X1, . . . , Xn are
(conditionally) independent and furthermore

Xi | Θi = θi
ind∼ SGeo(θi)

Θ1, . . . ,Θn | A = α
iid∼ Be(α, α)

A ∼ Exp (1) .

That is, we assume both hyperparameters are the same, and equip this common
parameter with a standard exponential distribution, i.e. fA(α) = e−α1[0,∞)(α). For
this model, the posterior cannot be obtained in closed form. However, the Gibbs
sampler can be used. Show that the update step for A boils down to drawing from
a density p(α) that satisfies

p(α) ∝
(c
e

)α
(B(α, α))−n 1[0,∞)(α),

with c =
∏n

i=1 (θi(1− θi)).

2. The Cramer-Rao theorem is as follows: Suppose X has density fX(· | θ) with respect
to the measure ν.

Assume Ω ⊂ R and let ϕ(X) be a one-dimensional statistic with Eθ|ϕ(X)| < ∞ for
all θ. Suppose the FI regularity conditions are satisfied, I(θ;X) > 0 and also that∫
ϕ(x)fX(x | θ)dν(x) can be differentiated under the integral sign with respect to θ.

Then

Varθ ϕ(X) ≥
(

d
d θ

Eθ ϕ(X)
)2

I(θ;X)
.

Give a proof of this result.

Hint: First prove that

d

d θ
Eθ ϕ(X) = Eθ [ϕ(X)s(θ | X)] ,

where s(θ | x) = d
d θ

log fX(x | θ). Next, apply the Cauchy-Schwarz inequality.
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3. Suppose X has density

fX(x | θ) =
θ

xθ+1
1[1,∞)(x).

Assume θ > 1. Then EθX = θ/(θ − 1).

Suppose θ1 > θ0 > 0 and we wish to test H0 : θ = θ0 versus H1 : θ = θ1. Define the
decision rules dc(X) by

dc(X) =

{
a0 = {accept H0} if X > c

a1 = {accept H1} if X ≤ c
,

where c > 1.

(a) Incorrectly accepting H0 is considered twice as costly as incorrectly accepting H1.
Write down a loss function that reflects this.

(b) Using this loss function, derive an expression for the risk-function of the rule dc(X),
both for θ = θ0 and for θ = θ1. Your answer should only depend on θ0, θ1 and c.

(c) Suppose θ0 = 2 and θ1 = 3. If a priori H0 and H1 are considered equally likely,
show that the Bayes decision rule corresponds to c = 3.

(d) Suppose θ0 = 2 and θ1 = 3. Show that the minimax rule corresponds to c = 1/y
where y ∈ (0, 1) solves y3 + 0.5y2 − 0.5 = 0.

4. Give an example where the maximum likelihood estimator (mle) is inadmissible. That
is, specify the statistical model, the mle and the loss function. Note that you do not
need to prove inadmissibility.
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Solutions

1. (a) As
Eθ 1{Xi=0} = Pθ(X = 0) = θ

we have that 1
n

∑n
i=1 1{Xi = 0} is unbiased for θ. More explicitly:

Eθ

[
1

n

n∑
i=1

1{Xi = 0}

]
=

1

n

n∑
i=1

Eθ 1{Xi = 0} = Pθ(X1 = 0) = θ.

(b) We have fXn(xn | θ) = (1 − θ)
∑n

i=1 xiθn. This shows that
∑n

i=1Xi is sufficient
(factorisation theorem). Now suppose that

fXn(xn | θ)
fXn(yn | θ)

= (1− θ)
∑n

i=1 xi−
∑n

i=1 yi

does not depend on θ. This implies that
∑n

i=1 xi =
∑n

i=1 yi, which in turn implies
that

∑n
i=1 Xi is minimal sufficient.

(c) We first compute the MLE for θ. We have

`(θ) = S log(1− θ) + n log θ,

where S =
∑n

i=1 Xi.

`′(θ) =
n(1− θ)− θS
θ(1− θ)

.

Setting `′(θ) = 0 gives θ = n
n+S

. It’s easily verified that this stationary point
indeed corresponds to a maximum. As g : (0, 1) → R with g(θ) = θ/(1 − θ) is
bijective, the MLE for τ is given by

g

(
n

n+ S

)
=
n

S
.

(d) The optimal test is the Neyman-Peason test which rejects for large values of

L(θ1;X1)

L(1/2;X1)
=

(1− θ1)X1θ1

(1− 1/2)X11/2
= (2(1− θ1))X1 2θ1.

As θ1 < 1/2 we reject for large values of X. The p-value is given by

p = P1/2(X ≥ 2) = 1− P1/2(X = 1)− P1/2(X = 0) = 1− 1/2− 1/4 = 1/4.

(e) We have
p(θ | xn) ∝ θn+α−1(1− θ)β+s−1,

with s =
∑n

i=1 xi. Therefore, the posterior for θ has the Be(n + α, β + s)-
distribution. This gives

E[Θ | Xn] =
n+ α

n+ α + β +
∑n

i=1 Xi

.
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(f) We have

`′′(θ) = − S

(1− θ)2
− n

θ2
.

So

I(θ;Xn) =
Eθ S

(1− θ)2
+
n

θ2

=
nθ

(1− θ)3
+
n

θ2
∝ θ3 + (1− θ)3

(1− θ)3θ2

Now take the square root.

(g) Plug in θ = τ/(1 + τ) and multiply with
∣∣ d θ

d τ

∣∣. So

fT (τ) = fΘ

(
τ

1 + τ

) ∣∣∣∣ τ

1 + τ

∣∣∣∣ .
(h)

fX(x;α, β) =

∫ n∏
i=1

[
1

B(α, β)
θα−1
i (1− θi)β−1(1− θi)xiθi

]
d θ1 · · · d θn

=
1

B(α, β)n

n∏
i=1

∫
θαi (1− θi)xi+β−1d θi

=
n∏
i=1

B(α + 1, β + xi)

B(α, β)

Empirical Bayes estimates can be obtained by maximising this expression with
respect to (α, β).

(i) We need the “full conditional” of α, Now

p(α | all other rv) ∝ 1

B(α, α)n

(
n∏
i=1

(θi(1− θi))α
)
e−α1[0,∞)(α).

This gives the required expression, since the term in brackets equals cα.

2. We have

d

d θ
Eθ ϕ(X) =

d

d θ

∫
ϕ(x)fX(x | θ)d ν(x)

=

∫
ϕ(x)

d

d θ
fX(x | θ)d ν(x)

=

∫
ϕ(x)s(θ | x)fX(x | θ)d ν(x) = Eθ [ϕ(X)s(θ | X)] ,

where s(θ | x) = d
d θ

log fX(x | θ). Upon taking ϕ ≡ 1 we get Eθ s(θ | X) = 0. Hence

d

d θ
Eθ ϕ(X) = Eθ [(ϕ(X)− Eθ ϕ(X))s(θ | X)] .
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The Cauchy-Schwarz inequality then gives∣∣∣∣ d

d θ
Eθ ϕ(X)

∣∣∣∣ ≤ (Eθ

[
(ϕ(X)− Eθ ϕ(X))2

]
Eθ

[
s(θ | X)2

])1/2
.

The result now follows, since the square of the right-hand-side equals Varθϕ(X)·I(θ;X).

3. (a) There is no loss involved with a correct decision:

L(θ0, a0) = L(θ1, a1) = 0.

We can further take L(θ0, a1) = 1. Then the loss of incorrectly accepting H0,
L(θ1, a0) can be taken equal to 2.

(b) We have

R(θ, dc(X)) = Eθ L(θ, dc(X)) = L(θ, a0)Pθ(dc(X) = a0) + L(θ, a1)Pθ(dc(X) = a1)

Hence
R(θ0, dc(X)) = L(θ0, a1)Pθ(X ≤ c) = 1− c−θ0

and
R(θ1, dc(X)) = L(θ1, a0)Pθ(X > c) = 2c−θ1 .

(c) We need to find c > 1 such that the Bayes risk is minimal. The Bayes risk is given
by

1

2
(1− c−θ0) + c−θ1 .

With θ0 = 2 and θ1 = 3 this becomes 1
2
(1 − c−2) + c−3. Define y = c−1. Then

equivalently we need to minimise

y 7→ 1

2
(1− y2) + y3 over y ∈ (0, 1).

Taking the derivative with respect to y and equating to zero gives

−y + 3y2 = y(3y − 1) = 0.

It is easily verified that ŷ = 1/3 corresponds to a global minimum. Therefore,
c = 1/ŷ = 3 gives the Bayes decision rule.

(d) By making a sketch, it is easy to see that

c 7→ max(0.5(1− c−2), c−3)

has its minimum at the point where the two components cross. That is, c > 1 for
which

0.5(1− c−2) = c−3.

Now set c−1 = y and the result follows.

4. One can take Stein’s example, where Xi
ind∼ N (θi, 1), for 1 ≤ i ≤ p. Then the MLE for

θi is simply Xi. Take the loss function

l(θ, a) =

p∑
i=1

(θi − ai)2.

Then for p ≥ 3 the MLE is inadmissible.
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