Solution of Exercise 1

(a)
$$\tilde{x} = (25 \ 25 \ 2)^{\top}$$
 and $\tilde{u} = 4$.

(b)
$$\dot{z} = Az + Bv$$
, $w = Cz + Dv$ with

$$A = \begin{pmatrix} -\frac{1}{5} & \frac{1}{5} & 0\\ 0 & -\frac{1}{5} & 5\\ 0 & 0 & -2 \end{pmatrix}, \ B = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}, \ D = 0.$$

Solution of Exercise 2

(a) The transfer function of the interconnection equals $\frac{s^2+s-2}{s^3+3s^2+(2-k)s+k}$. A state space description of Σ is given by $\dot{x}=Ax+Bv,z=Cx$ with

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k & k-2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & 1 & 1 \end{pmatrix}.$$

(c) Using the Routh criterion it follows that for $k \in (0, 1\frac{1}{2})$ the transfer function is stable.

Solution of Exercise 3

(a)
$$R = \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \alpha \end{pmatrix}$$
, rank $R = 2$, im $R = \text{span } \{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \}$, independent of α, β .

(b)
$$W = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ \beta & 0 & -\beta & 0 \\ 0 & \beta & 0 & 0 \end{pmatrix}$$
, rank $W = 2$, $\ker W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$, independent of α, β .

(c) Transformation matrix
$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 yields $\tilde{A} = T^{-1}AT = \begin{pmatrix} 0 & \alpha & 1 & -1 \\ \frac{1}{0} & 0 & 2 & 1 \\ 0 & 0 & 0 & -\beta \\ 0 & 0 & -1 & 0 \end{pmatrix}$, $\tilde{B} = T^{-1}B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $\tilde{C} = CT = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(d) From the structure of the matrices \tilde{A}, \tilde{B} and \tilde{C} it follows that $Ce^{At}B = \tilde{C}e^{\tilde{A}t}\tilde{B} = 0$. This also follows from (a) and (b) as the controllable (=reachable) subspace is contained in, actually equals, the unobservable subspace.

1

(e) If $\alpha=\beta=0$, all eigenvalues of A and \tilde{A} are located at 0, look at \tilde{A} . Hence, the algebraic multiplicity of the eigenvalue 0 is 4. However, also from \tilde{A} , it follows that the geometric multiplicity of the eigenvalue 0 is at most 3. Hence, the system is unstable.

Solution of Exercise 4 Note that A has eigenvalues -2, -1 and 1.

- (a) For $\lambda = 1$, rank $(A \lambda I, B) = 3$ and rank $\begin{pmatrix} A \lambda I \\ C \end{pmatrix} = 3$. Verify this! (Why does it suffice to look at $\lambda = 1$ only?) It follows that the system is stabilizable and detectable.
- (b) With $F=\begin{pmatrix}0&-9&-30\end{pmatrix}$ the eigenvalues of A+BF are located at -2,-4,-5. Note that -2 is a fixed eigenvalue. The others can be placed arbitrarily.
- (c) Simple inspection show that $K=\begin{pmatrix}0\\0\\4\end{pmatrix}$ is such that A-KC has eigenvalues at the requested locations.
- (d) For the dynamic controller, see (5.10) in the course notes. The eigenvalues of the closed loop system are located at -2, -4, -5, -1, -2, -3. See also the text below equation (5.12) in the course notes.

Solution of Exercise 5

- (a) The statement is false. Take A=-1 and B=0, then (A,B) is stabilizable, but (A^2,B) is not.
- (b) The statement is true. For instance, take $A=\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $C=\begin{pmatrix} 1 & 0 \end{pmatrix}$ and $x_0=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then $y(t)=\sin 2t$ for any input function, hence also for $u(t)=e^{-t}$.
- (c) The statement is false. Consider the transfer functions $\frac{(s-1)}{(s+1)(s+2)}$ and $\frac{1}{(s-1)}$. The first one is stable, the second one is unstable. Then the series connection has the transfer function $\frac{1}{(s+1)(s+2)}$, which is stable.
- (d) The statement is true. In fact, the statement follows from the fact that $\det(sI-A) = \det(sI-A)^{\top} = \det(sI-A^{\top})$. For the characteristic polynomial of a matrix in companion form see Exercise 3.5.14 in the course notes.