
Solution of Exercise 1

(a) Take x1 = v, x2 = v̇, then ẋ = f(x, u), y = g(x, u) with

x =

(
x1
x2

)
, f(x, u) =

(
x2

−x1 + x32 + u3

)
, g(x, u) = x21 + u2.

(b) By substitution it follows that u(t) = −2 cos t, y(t) = 4.

(c) Using some alternative notation, ∆̇x = A(t)∆x+B(t)∆u,∆y = C(t)∆x+
D(t)∆u with

A(t) =

(
0 1
−1 12 cos2 t

)
, B(t) =

(
0

12 cos2 t

)
, C(t) =

(
4 sin t 0

)
, D(t) = −4 cos t.

Solution of Exercise 2

(a) The transfer function of the interconnection equals
(s+ 1)(s+ 4)

s3 + 4s2 + 10s+ 4 + α
.

(b) Using the Routh table it follows easily that for α ∈ (−4, 36) the transfer
function is stable. There may be pole-zero cancellation for s = −1 or
s = −4, so that only stable poles may be cancelled. Hence, the conclusion
remains that for α ∈ (−4, 36) the transfer function is stable.

(c) For α = 3, the transfer function reduces to
(s+ 4)

s2 + 3s+ 7
. A realisation is

given by A =

(
0 1
−7 −3

)
, B =

(
0
1

)
, C =

(
4 1

)
, D = 0. It

follows easily that the realisation is controllable and observable, so that it
has a minimal dimension.

Solution of Exercise 3

(a) The characteristic equation equals det (λI − A) = λ3 + λ2 + λβ2 + β2 =
(λ+1)(λ2+β2). Hence, the eigenvalues are λ1 = −1, λ2,3 = ±iβ. If β 6= 0,
then all eigenvalues are distinct in the closed left half plan, indicating that
the system is stable for β 6= 0. If β = 0, then there are two eigenvalues at
zero on the imaginary axis with an eigenspace that can shown to be one
dimensional, implying that the system is unstable for β = 0.

(b) The controllability matrix is R =
(
B AB A2B

)
=

 1 0 −β2

0 −1 0
2 0 −2β2

.

Clearly, det R = 0 for all β. So, the system is not controllable for any β.

The controllable subspace is given by im R = span {

 1
0
2

 ,

 0
1
0

}.
(c) Extend the basis of the controllable subspace, to obtain the transformation

matrix T =

 1 0 0
0 1 0
2 0 1

. Transformation to the associated basis yields
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Ã = T−1AT =

 0 β2 0
−1 0 − 1

2

0 0 −1

, B̃ = T−1B =

 1
0
0

 and C̃ = CT =

(
10 1 4

)
. Note that (

(
0 β2

−1 0

)
,

(
1
0

)
) is a controllable pair.

Solution of Exercise 4
Note that the pair (A,B) has already the well-known controllable/non-controlla-
ble decomposition. Hence, the eigenvalues in the upper left part can be assigned
by feedback and the eigenvalues in the lower right part are fixed. Also note that
with B only the second row of matrix A can be modified.

(a) Take F =
(
f1 f2 f3 f4

)
and observe by looking at the matrices that

det (λI−(A+BF )) = det

(
λ −1

1− f1 λ− 3− f2

)
det

(
λ+ 1 4
−1 λ+ 1

)
=
(
λ2− (3 +f2)λ+ (1−f1)

)(
(λ+ 1)2 + 4

)
. The eigenvalues characterised

by
(

(λ+ 1)2 + 4
)

are fixed and are located at −1±2i in the open left half

plane. The eigenvalues characterised by
(
λ2 − (3 + f2)λ + (1 − f1)

)
can

be assigned arbitrarily, especially in the open left half plane. Hence, the
system is stabilizable.

(b) From the question it follows that q(s) is a feasible characteristic polynomial

of A+BF for suitable F . Hence, it must contain
(

(λ+1)2+4
)

as a factor.

In fact, it follows by long division that q(s) =
(
λ2 +4λ+3

)(
(λ+1)2 +4

)
.

From part (a) it follows that then f1 and f2 can be chosen as −(3+f2) = 4
and (1−f1) = 3, or f1 = −2 and f2 = −7. The elements f3 and f4 can be
chosen arbitrarily. Hence, F =

(
−2 −7 ∗ ∗

)
, with the ∗’s denoting

arbitrary values, answers the question.

(c) From part (a) it follows that the possible characteristic polynomials are
(λ2 + aλ+ b)((λ+ 1)2 + 4), with a, b ∈ R free.

Solution of Exercise 5

(a) According to the Hautus test, the pair (C,A) is observable if and only if

rank

(
A− sI
C

)
= n for all s ∈ C, which means that the (n+p)×nmatrix A11 − sI 0

0 A22 − sI
C1 C2

 has full column rank n1 + n2 for all s ∈ C.

Hence, it follows that rank

 A11 − sI
0
C1

 = n1 and rank

 0
A22 − sI

C2


= n2 for all s ∈ C. Since the zero matrices do not matter here, it follows

that rank

(
A11 − sI

C1

)
= n1 and rank

(
A22 − sI

C2

)
= n2 for all s ∈ C.

In other words, the pairs (C1, A11) and (C2, A22) are observable.
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(b) Take A =

(
1 0
0 1

)
and C =

(
1 1

)
. Then A11 = A22 = C1 = C2 = 1.

It follows directly that (C1, A11) and (C2, A22) are observable. However,
it is seen easily that (C,A) is not observable.

(c) Let λ be an arbitrary eigenvalue of A11, then A22 is invertible and it

follows that

 A11 − λI 0
0 A22 − λI
C1 0

 = n1 + n2. Using contradiction,

it can even be shown that also the matrix

 A11 − λI 0
0 A22 − λI
C1 C2

 has

rank n1+n2, implying that

(
A− λI
C

)
has rank n. Since the same holds

for any eigenvalue of A2, it follows by the Hautus test that the pair (C,A)
is observable.

Solution of Exercise 6

(a) By repeated application of the Cayley Hamilton theorem, it follows that
Ak can be expressed as a linear combination with scalar coefficients of
A0, A1, . . . , An−1, for all k ≥ n. Hence, CAkB can be expressed as a
linear combination with scalar coefficients of CB,CAB, . . . , CAn−1B, for

all k ≥ n. The same then applies to CeAtB =
∑

k≥0
CAkBtk

k! . Hence,

to compute the impulse response CeAtB, only CB,CAB, . . . , cAn−1B are
really required, and the statement is true.

(b) If (A,B) is controllable, then rank (A − sI B) = n for all s ∈ C. Hence,
certainly for s = 0 it then follows that rank (A B) = n, or im (A B) = Rn.
If rank A + rank B < n, then dim im A + dim im B < n, implying that
dim im (A B) ≤ dim im A + dim im B < n, and consequently (A,B) can
not be controllable. Hence, the statement is true.

(c) The statement is false. Take n = p = and A = C = 1, then (C,A) and
(C,A−1) are both discrete time observable, and therefore also discrete
time detectable.
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