
DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ti2306 Algorithm Design
Digital test – part 2 of 2

January 29, 2019, 13.30-15.30

• Usage of the book, notes or a calculator during this test is not allowed.

• This digital test contains 3 questions (worth a total of 10 points) contributing 10/20 to your grade for
the digital test. The other digital test contributes the other 10/20 to your grade. Note that the final
mark for this course also consists for 2

3 of the unrounded score for the written exam (if both ≥ 5.0).

• The storyline throughout the questions can be ignored: each question can be answered independently
of the others and in any order.

• The spec tests in WebLab do not represent your grade.

• There is an API specification of the Java Platform (Standard Edition 8) available at https://weblab.
tudelft.nl/java8/api.

• When an implementation is asked, please provide the most efficient implementation in terms of asymp-
totic time complexity. Providing a suboptimal implementation can lead to a subtraction of points.

• The material for this tests consists of module 3 (Dynamic Programming) and 4 (Network Flow) of the
course and the corresponding book chapters and lectures.

• Total number of pages (without this preamble): 1.

https://weblab.tudelft.nl/java8/api
https://weblab.tudelft.nl/java8/api


Algorithm Design, TI2306 page 1 of 1 January 29, 2019

1. (3 points) A company behind an operating system supplies updates (e.g., with security-related bug fixes)
via the Internet. At a certain moment in time, a number of updates are in development, and for each
update we know the exact future date when it is ready. In order of these dates, the updates are denoted
by their index in the sequence 1, 2, . . . , n.

Shipping an update comes with some constant (and known) costs c. To minimise these shipping costs,
the board of directors of the company are asking you to explore the possibility of bundling updates. A
bundle is a series of consecutive updates i, i+ 1, . . . , j that is shipped in one go.

The total costs of a bundle consists of shipping costs and risk-related costs: shipping one complete bundle
is equal to the cost of a single update (c). However, postponing security updates until the complete bundle
of updates is ready means users are at risk longer. These (estimated) costs of a bundle i, i+1, . . . , j are
given to us, denoted by costs[i][j] for all 1 ≤ i ≤ j ≤ n.1 The board would like to know how to
bundle updates, so that the sum of the costs of all bundles is minimised.

Implement an efficient iterative dynamic programming algorithm to compute the minimal costs of bundling.
You are given the following input: the number of updates n, the shipping costs c, and the table costs
with dimensions (n+ 1)× (n+ 1).

2. (3 points) When you present your solution to the board members, one of them explains that the content
of updates come from code changes that either resolve bugs or include new features. We call these
code changes “jobs”. Each job i ∈ {1, 2, . . . , n} has some (estimated) costs costs[i], representing the
number of hours required for a developer, and some (estimated) benefits benefits[i] to end-users.
There is a dynamic program in place that finds the maximal total benefit of any list of selected jobs given
a (monthly) cost budget of C: this program fills an array M with at position M [i][c] for i ∈ {1, 2, . . . , n}
and 0 ≤ c ≤ C the benefit of the optimal selection of jobs from {1, . . . , i} such that the total costs of the
included jobs is not more than the budget c, i.e., this array contains the results of the following recursive
function:

M(i, c) =


0 if i < 1

M(i− 1, c) if costs[i] > c

max {M(i− 1, c), benefits[i]+M(i− 1, c− costs[i])} otherwise

Implement an algorithm that determines which jobs together have the maximum total benefit using the
table M . As input you get: the number of jobs n, the total cost budget C, the array benefits of
dimension n+1, the array costs of dimension n+1, and the array M filled as described in the text above,
with dimensions (n+1)× (C +1). The algorithm should return a list of the indices of the included jobs
in increasing order. This algorithm should run in linear time.

3. (4 points) When you bring your solution to the attention of the developers of the operating system,
it appears that the board of directors (who gave you the assignment in the first place) completely
misunderstood how such a selection of code changes (”jobs”) is made:

1. Jobs are sometimes dependent on each other: there are a number of pairs of jobs (i, j) for which it
holds that if i is included, then also j must be included in the new release.

2. There is no exact limit on the budget: when it is clear that the benefits outweigh the costs (e.g.,
with high-risk security bugs), developers from other departments jump in to help, or implementing
all the jobs just takes longer (e.g., than a month).

You are asked to implement an algorithm to find a subset of jobs that maximises the net profit (total
benefit minus total costs) under these (new) conditions.

You are again given a list of n jobs, with for each job 1 ≤ i ≤ n the costs[i] and the benefits[i]
in arrays as for question 2. Also now you are given a list of pairs of code changes (i, j) where i is
dependent on j. These are represented as a 2D-array dependencies of dimension (n + 1) × (n + 1)
where dependencies[i][j] = 1 iff i depends on j and 0 otherwise.

Create a flow network and use the given implementation of Ford-Fulkerson to find the subset of jobs with
maximal net profit (to include in the next release). Output only the (net) value of this release, i.e., the
benefit minus the costs of the included jobs.

1Where costs[i][j]= 0 for all i ≥ j.

End of exam questions


