Final Exam: Linear Algebra CSE1205 April 17, 2019, 13:30 – 16:30 hs

- Calculators and formula sheets are **not** allowed.
- Credits: 2 points for questions from Part I (except question 17 and 18; 1 point for these) and 5 points for questions from Part II.
- The final score: Sum and divide by 6.

PART I: MULTIPLE CHOICE QUESTIONS

1. How many solutions does the following system of equations has?

$$x_1 + x_2 + x_3 = 6$$
$$2x_1 + x_2 + 3x_3 = 10$$
$$x_1 + 3x_2 + 2x_3 = 13$$

- **A.** No solution
- C. A unique solution
- **B.** ∞ many solutions
- **D.** None of the other statements apply
- **2.** Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & -1 & 2 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} -1 & 3 & 0 & 1 \end{bmatrix}^T$, $\mathbf{b}_3 = \begin{bmatrix} 3 & -1 & -2 & 3 \end{bmatrix}^T$. The dimension of $Span\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is:
 - **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

3. It is given that
$$AB = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$
, where $B = \begin{bmatrix} 4 & 5 \\ 1 & 1 \end{bmatrix}$. The (3,2)-entry a_{32} of A is equal to:

- **A.** -17 **B.** -13 **C.** -7 **D.** -1 **E.** 1
- **F.** 7
- **G.** 13
- **4.** Suppose the equation $A\mathbf{x} = \mathbf{b}$, for an $n \times n$ matrix A, is inconsistent for some \mathbf{b} in \mathbb{R}^n . Which of the following statements *must* be true?
 - **A.** det $A \neq 0$
 - C. $\operatorname{Col} A = \mathbb{R}^n$
 - **E.** A has n pivot positions
 - **G.** Nul $A \neq \{0\}$

- **B.** The columns of A are linearly independent
- **D.** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- **F.** The map $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one
- **H.** None of the others
- **5.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that leaves \mathbf{e}_1 unchanged, while \mathbf{e}_2 is mapped to $-2\mathbf{e}_1 + \mathbf{e}_2$. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects points though the line y=-x. Find the standard matrix for the composition $S\circ T$:

- A. $\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$ E. $\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$ F. $\begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$ G. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ H. $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$
- **6.** Which of the sets $W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x+y+z=2 \right\}, W_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid 2x-y=z, x=y \right\}$ is a subspace of \mathbb{R}^3 ?

7. The dimension of Nul(A), where $A = \begin{bmatrix} -2 & 2 & 3 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 3 & 2 & 0 & 1 \end{bmatrix}$, equals:

A. 0

B. 1

C. 2

H. 7

8. Let A and B be two invertible matrices, \mathbf{v} a non-zero vector and λ a non-zero scalar such that $A\mathbf{v} = \lambda B\mathbf{v}$. Then:

A. λ^{-1} is an eigenvalue of $B^{-1}A$

B. λ is an eigenvalue of $A^{-1}B$

C. λ^{-1} is an eigenvalue of BA^{-1}

D. λ is an eigenvalue of AB^{-1}

E. λ^{-1} is an eigenvalue of $A^{-1}B$

F. λ is an eigenvalue of BA^{-1}

- **G.** λ^{-1} is an eigenvalue of AB^{-1}
- **H.** None of the other options
- **9.** Calculate A^5 , where $A = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$:

A. $\begin{bmatrix} -30 & -62 \\ 31 & 63 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 1 \\ -2 & 243 \end{bmatrix}$ C. $\begin{bmatrix} 63 & -31 \\ -62 & -30 \end{bmatrix}$ D. $\begin{bmatrix} -30 & 63 \\ -62 & 31 \end{bmatrix}$ E. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ F. $\begin{bmatrix} -62 & 63 \\ -30 & 31 \end{bmatrix}$ G. $\begin{bmatrix} 0 & 1 \\ -32 & 243 \end{bmatrix}$ H. $\begin{bmatrix} -30 & 31 \\ -62 & 63 \end{bmatrix}$

- **10.** Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{b}_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$. If we apply the Gram-Schmidt process to $\{b_1, b_2, b_3\}$ to obtain an orthogonal set $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$, then \mathbf{v}_3 is (up to rescaling) equal to

A. $\begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$ **B.** $\begin{bmatrix} 0 & -2 & 1 & 1 \end{bmatrix}^T$ **C.** $\begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^T$ **D.** $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ **E.** $\begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$ **F.** $\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$ **G.** $\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}^T$ **H.** $\begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T$

11. Determine all the distinct (real and complex) eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 4 & -1 \end{bmatrix}.$$

A. 1, -1 + 2i, -1 - 2i

B. 1

C. 1, 1+2i, 1-2i

D. 1, 1 + 2i, -1 - 2i

E. 1, -2 + i, -2 - i

F. 1, 1+i, 1-i

G. 1, 3, -1

H. 1, 2+i, 2-i

12. Calculate the inverse of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix}$, if it exists.

Then the sum of all the entries of A^{-1} is equal to:

A. -3

B. -2

C. -1

D. 0

E. 1

F. 2

G. 3

H. A is not invertible

- **13.** Find the distance from $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ to $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$:
 - **C.** 5 **D.** $\sqrt{29}$ **E.** $\sqrt{30}$ **F.** 10 **G.** 29 **A.** 1 **H.** 30

For questions **14** and **15** consider the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

- 14. The algebraic multiplicity of the eigenvalue 2 of the above matrix A equals
 - **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4
- **F.** 5
- 15. The geometric multiplicity of the eigenvalue 2 of the above matrix A equals
 - **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4 **F.** 5
- **16.** Suppose the equation $A(XB^{-1})^T = C$ holds for invertible matrices A, B, C. Solving for X gives that X is equal to: A. $C(A^{-1})^T B$ B. $A^{-1}CB$ C. $(A^{-1})^T C^T B$ D. $C^T A^{-1} B$ E. $(A^{-1})^T C^T B^T$ F. $C^T (A^{-1})^T B$ G. $(A^{-1})^T C B^T$ H. None of the above

- 17. Suppose that the square matrix A is row equivalent to B and $\lambda = 1$ is an eigenvalue of A. Is $\lambda = 1$ also an eigenvalue of B?
 - A. True

- **B.** False
- 18. Suppose that the square matrix A is row equivalent to B and $\lambda = 0$ is an eigenvalue of A. Is $\lambda = 0$ also an eigenvalue of B?
 - A. True

- **B.** False
- 19. Which of the following statements are always true if Q is a (not necessarily square) matrix with **orthonormal rows**?

 - $(I) Q^T Q = I \qquad (II) QQ^T = I$
 - **A.** Both are false
- **B.** Only (I) is true **C.** Only (II) is true **D.** Both are true
- **20.** Consider the following statements for a square matrix A.
 - (I) If A invertible and diagonalizable, then A^{-1} is also diagonalizable
 - (II) If A diagonalizable, then A^T is also diagonalizable
 - **A.** Both statements are false
- **B.** Only (I) is true

C. Only (II) is true

- **D.** Both statements are true
- **21.** Find the equation $y = \beta_0 + \beta_1 x$ of the best line (in the least-squares sense) that fits the points (0,1), (2,3), (4,2).

- **A.** y = 2 **B.** y = 0.5 + x **C.** y = 1 + x **D.** y = 1.5 + 0.25x **E.** y = 1 + 0.25x **G.** y = 1 **H.** y = 1 + 0.5x

END OF PART I. GO TO PART II: TRUE/FALSE QUESTIONS

CSE1205~(Linear~Algebra),~17-04-2019,~~True/False~Questions

Name:		Student ID:				
		le whether the statements are true or false. a specific counterexample.				
22.	If A and B are matrix	rices such that AB exists, then: if $\mathbf{x} \in \text{Col}(AB) \implies \mathbf{x} \in \text{Col}(A)$.				
23.		the linearly independent vectors, then ${}_3+\mathbf{v}_4,2\mathbf{v}_1+\mathbf{v}_2+\mathbf{v}_4\}$ are also linearly independent.				

(Continued on next page!)

f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	n A is invertib	ole.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	le.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	le.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertibe	ble.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertibe	ole.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	ole.
f a square	matrix A sa	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	ble.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	ble.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertibe	ole.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertibe	ole.
f a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertib	ole.
if a square	matrix A sat	tisfies the equ	nation $2A^2 +$	3A = 4I, then	A is invertibe	ble.