Final Exam: Linear Algebra CSE1205 April 17, 2019, 13:30 – 16:30 hs

• Calculators and formula sheets are **not** allowed.

• Credits: 2 points for questions from Part I (except question 17 and 18; 1 point for these) and 5 points for questions from Part II.

• The final score: Sum and divide by 6.

PART I: MULTIPLE CHOICE QUESTIONS

1. How many solutions does the following system of equations has?

$$x_1 + x_2 + x_3 = 6$$

 $2x_1 + x_2 + 3x_3 = 10$
 $x_1 + 3x_2 + 2x_3 = 13$

A. No solution

B. ∞ many solutions

C. A unique solution

D. None of the other statements apply

Answer: C.

The system is consistent, with unique solution $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & -1 & 2 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} -1 & 3 & 0 & 1 \end{bmatrix}^T$, $\mathbf{b}_3 = \begin{bmatrix} 3 & -1 & -2 & 3 \end{bmatrix}^T$. The dimension of $Span\{b_1, b_2, b_3\}$ is:

A. 0

B. 1

C. 2

D. 3

E. 4

Answer: C.

The matrix $A = [\mathbf{b}_1 \, \mathbf{b}_2 \, \mathbf{b}_3]$ has rank 2 (meaning: it has 2 pivot positions), so the dimension is 2.

3. It is given that $AB = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$, where $B = \begin{bmatrix} 4 & 5 \\ 1 & 1 \end{bmatrix}$. The (3,2)-entry a_{32} of A is equal to:

A. -17 B. -13 C. -7 D. -1 E. 1 F. 7 G. 13 H. 17

Answer: B.

We have $A = (AB)B^{-1} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ 1 & -4 \end{bmatrix}$. The (3,2)-entry a_{32} of A is therefore

- **4.** Suppose the equation $A\mathbf{x} = \mathbf{b}$, for an $n \times n$ matrix A, is inconsistent for some \mathbf{b} in \mathbb{R}^n . Which of the following statements must be true?
 - **A.** det $A \neq 0$

B. The columns of A are linearly independent

C. Col $A = \mathbb{R}^n$

- **D.** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- **E.** A has n pivot positions
- **F.** The map $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one

G. Nul $A \neq \{0\}$

H. None of the others

Answer: G.

Because of the Invertible Matrix Theorem: Nul $A \neq \{0\}$

- **5.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that leaves \mathbf{e}_1 unchanged, while \mathbf{e}_2 is mapped to $-2\mathbf{e}_1 + \mathbf{e}_2$. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects points though the line y = -x. Find the standard matrix for the composition $S \circ T$:

- A. $\begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$ E. $\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$ F. $\begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$ G. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ H. $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$

Answer: D.

The standard matrix of $S \circ T$ is given by

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$$

- **6.** Which of the sets $W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x+y+z=2 \right\}, W_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid 2x-y=z, x=y \right\}$ is a subspace of \mathbb{R}^3 ?
 - **A.** None of them
- **B.** Only W_1
- C. Only W_2
- **D.** Both

Answer: C.

Only W_2 is a subspace, it is a plane passing through the origin.

 W_1 is an affine line, so it is not a subspace.

- The dimension of Nul(A), where $A = \begin{bmatrix} -2 & 2 & 3 & 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 3 & 2 & 0 & 1 \end{bmatrix}$, equals:
 - **A.** 0
- **B.** 1

Answer: E.

The rank of A is 3 (since it has 3 pivot positions), so by the rank theorem the dimension of Nul(A) is 7 - 3 = 4.

- **8.** Let A and B be two invertible matrices, \mathbf{v} a non-zero vector and λ a non-zero scalar such that $A\mathbf{v} = \lambda B\mathbf{v}$. Then:
- C. λ^{-1} is an eigenvalue of BA^{-1} B. λ is an eigenvalue of $A^{-1}B$ D. λ is an eigenvalue of $A^{-1}B$

E. λ^{-1} is an eigenvalue of $A^{-1}B$

F. λ is an eigenvalue of BA^{-1}

G. λ^{-1} is an eigenvalue of AB^{-1}

H. None of the other options

Answer: E.

Multiplying both sides of $A\mathbf{v} = \lambda B\mathbf{v}$ by A^{-1} from the left and then dividing both sides by λ shows that λ^{-1} is an eigenvalue $A^{-1}B$. Observe that $\lambda \neq 0$ since A is invertible.

9. Calculate A^5 , where $A = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$:

A.
$$\begin{bmatrix} -30 & -62 \\ 31 & 63 \end{bmatrix}$$
 B. $\begin{bmatrix} -62 \\ 31 & 63 \end{bmatrix}$

F.
$$\begin{bmatrix} -62 & 63 \\ -30 & 31 \end{bmatrix}$$

A.
$$\begin{bmatrix} -30 & -62 \\ 31 & 63 \end{bmatrix}$$
 B. $\begin{bmatrix} 0 & 1 \\ -2 & 243 \end{bmatrix}$ C. $\begin{bmatrix} 63 & -31 \\ -62 & -30 \end{bmatrix}$ D. $\begin{bmatrix} -30 & 63 \\ -62 & 31 \end{bmatrix}$ E. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ F. $\begin{bmatrix} -62 & 63 \\ -30 & 31 \end{bmatrix}$ G. $\begin{bmatrix} 0 & 1 \\ -32 & 243 \end{bmatrix}$ H. $\begin{bmatrix} -30 & 31 \\ -62 & 63 \end{bmatrix}$

G.
$$\begin{bmatrix} 0 & 1 \\ -32 & 243 \end{bmatrix}$$
 H. $\begin{bmatrix} -30 & 3 \\ -62 & 6 \end{bmatrix}$

Answer: H.

The matrix A is diagonalizable: $A = PDP^{-1}$, where $P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Whence
$$A^5 = PD^5P^{-1} = \begin{bmatrix} -30 & 31 \\ -62 & 63 \end{bmatrix}$$
.

10. Consider the vectors $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$, $\mathbf{b}_2 = \begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{b}_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$. If we apply the Gram-Schmidt process to $\{b_1, b_2, b_3\}$ to obtain an orthogonal set $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$, then \mathbf{v}_3 is (up to rescaling) equal to

$$\mathbf{A.} \begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$$

B.
$$\begin{bmatrix} 0 & -2 & 1 & 1 \end{bmatrix}^T$$

A.
$$\begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}^T$$
B. $\begin{bmatrix} 0 & -2 & 1 & 1 \end{bmatrix}^T$ **C.** $\begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^T$ **D.** $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ **E.** $\begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$ **F.** $\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$ **G.** $\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}^T$ **H.** $\begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T$

D.
$$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$$

E.
$$\begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$$

F.
$$\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$$

G.
$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}^T$$

H.
$$\begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T$$

Answer: B.

Applying Gram-Schmidt yields $\mathbf{v}_2 = \mathbf{b}_2 - \mathbf{b}_1 = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$

11. Determine all the distinct (real and complex) eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 4 & -1 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 4 & -1 \end{bmatrix}$$
A. $1, -1 + 2i, -1 - 2i$
B. 1
C. $1, 1 + 2i, 1 - 2i$
D. $1, 1 + 2i, -1 - 2i$
E. $1, -2 + i, -2 - i$
F. $1, 1 + i, 1 - i$
G. $1, 3, -1$
H. $1, 2 + i, 2 - i$

C.
$$1.1 + 2i.1 - 2i$$

D.
$$1, 1 + 2i, -1 - 2i$$

E.
$$1, -2 + i, -2 - i$$

F.
$$1, 1+i, 1-i$$

G.
$$1, 3, -1$$

H.
$$1, 2+i, 2-i$$

Answer: C.

The characteristic polynomial of A is given by $p(\lambda) = (1 - \lambda)(\lambda^2 - 2\lambda + 5)$. Using the quadratic formula we conclude that the roots are given by $1, 1 \pm 2i$

3

12. Calculate the inverse of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix}$, if it exists.

Then the sum of all the entries of A^{-1} is equal to:

A. -3 **B.** -2 **C.** -1

D. 0

F. 2

E. 1

G. 3

H. A is not invertible

Answer: F.

We have $A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{3}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$, so the sum of the entries is 2.

13. Find the distance from $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ to $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$:

A. 1

C. 5 **D.** $\sqrt{29}$ **E.** $\sqrt{30}$ **F.** 10 **G.** 29

H. 30

Answer: A.

The projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}} = \begin{bmatrix} 3/2 \\ 3/2 \\ 7/2 \\ 7/2 \end{bmatrix}$ and the distance is equal to

$$||\mathbf{y} - \hat{\mathbf{y}}|| = \left\| \frac{1}{2} \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix} \right\| = \sqrt{1} = 1$$

For questions **14** and **15** consider the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 3 & 0 \end{bmatrix}$.

14. The algebraic multiplicity of the eigenvalue 2 of the above matrix A equals

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

Answer: E.

The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ is given by $(1 - \lambda)(2 - \lambda)^4$, so the algebraic multiplicity is 4.

15. The geometric multiplicity of the eigenvalue 2 of the above matrix A equals

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

Answer: D.

- **16.** Suppose the equation $A(XB^{-1})^T = C$ holds for invertible matrices A, B, C. Solving for X gives that X is equal to:

- **A.** $C(A^{-1})^T B$ **B.** $A^{-1}CB$ **C.** $(A^{-1})^T C^T B$ **D.** $C^T A^{-1} B$ **E.** $(A^{-1})^T C^T B^T$ **F.** $C^T (A^{-1})^T B$ **G.** $(A^{-1})^T C B^T$ **H.** None of the above

Answer: F.

Solving for X yields $X = C^T (A^{-1})^T B$

- 17. Suppose that the square matrix A is row equivalent to B and $\lambda = 1$ is an eigenvalue of A. Is $\lambda = 1$ also an eigenvalue of B?

- two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Answer: B.

This is in general false (if $\lambda \neq 0$). Example: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

- **18.** Suppose that the square matrix A is row equivalent to B and $\lambda = 0$ is an eigenvalue of A. Is $\lambda = 0$ also an eigenvalue of B?
 - A. True

B. False

Answer: A.

By the Invertible Matrix Theorem: $\lambda = 0$ is an eigenvalue of $A \iff A$ is singular (i.e. not invertible). Since B is row equivalent to A, it follows that B is also singular. Therefore $\lambda = 0$ is also an eigenvalue of B.

- 19. Which of the following statements are always true if Q is a (not necessarily square) matrix with **orthonormal rows**?

 - $(I) Q^T Q = I \qquad (II) QQ^T = I$
- A. Both are false B. Only (I) is true C. Only (II) is true D. Both are true

Answer: C.

A matrix Q has <u>orthonormal columns</u> if and only if $Q^TQ = I$. Since Q has <u>orthonormal</u> rows if and only if Q^T has orthonormal columns, it follows that Q has orthonormal rows if and only if $(Q^T)^T(Q^T) = I$, that is $QQ^T = I$.

- **20.** Consider the following statements for a square matrix A.
 - (I) If A invertible and diagonalizable, then A^{-1} is also diagonalizable
 - (II) If A diagonalizable, then A^T is also diagonalizable
 - **A.** Both statements are false
- **B.** Only (I) is true

C. Only (II) is true

D. Both statements are true

Answer: D.

Suppose that A is diagonalizable: $A = PDP^{-1}$, with D a diagonal matrix.

The matrix A^T is also diagonalizable since $A^T = (P^T)^{-1}D^TP^T = (P^T)^{-1}DP^T$.

If A is also invertible, then A^{-1} is also diagonalizable because $A^{-1} = PD^{-1}P^{-1}$.

21. Find the equation $y = \beta_0 + \beta_1 x$ of the best line (in the least-squares sense) that fits the points (0,1), (2,3), (4,2).

A.
$$y = 2$$

B.
$$y = 0.5 + x$$

C.
$$y = 1 + x$$

A.
$$y = 2$$
 B. $y = 0.5 + x$ **C.** $y = 1 + x$ **D.** $y = 1.5 + 0.25x$ **E.** $y = 1 + 0.25x$ **F.** $y = 4 - 0.5x$ **G.** $y = 1$

E.
$$y = 1 + 0.25x$$

F.
$$y = 4 - 0.5x$$

G.
$$y = 1$$

H.
$$y = 1 + 0.5x$$

Answer: D.

The vector $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ is a least-square solution of the system $X \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \mathbf{y}$, where X is the design matrix and y the observation vector of the data:

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 4 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

The corresponding normal equations are given by $X^T X \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = X^T \mathbf{y}$, i.e.

$$\begin{bmatrix} 3 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

This system has the unique solution $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.25 \end{bmatrix}$

CSE1205 (Linear Algebra), 17-04-2019, True/False Questions

Name: E. Emsiz

Student ID:

write readable and underline your surname

You are asked to decide whether the statements are true or false. Either give a proof or a specific counterexample.

22. If A and B are matrices such that AB exists, then: if $\mathbf{x} \in \text{Col}(AB) \implies \mathbf{x} \in \text{Col}(A)$.

Answer: TRUE.

Solution 1:

If $\mathbf{x} \in \operatorname{Col}(AB)$, then \mathbf{x} is a linear combination of the columns of AB. This means that there exists a certain vector \mathbf{c} such that $\mathbf{x} = AB\mathbf{c}$.

Therefore $\mathbf{x} = A\mathbf{c}'$ where $\mathbf{c}' = B\mathbf{c}$.

This proves that $\mathbf{x} \in \operatorname{Col}(A)$.

Solution 2:

If $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$, then

$$Col(AB) = Span\{A\mathbf{b}_1 \dots A\mathbf{b}_n\}$$

But $A\mathbf{b}_i \in \operatorname{Col}(A)$ for any j, and therefore: $\operatorname{Col}(AB) \subseteq \operatorname{Col}(A)$

23. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ are linearly independent vectors, then $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4, 2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4\}$ are also linearly independent.

Answer: FALSE.

A set of vectors $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is linearly independent if the vector equation

$$x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n = \mathbf{0}$$

admits only the trivial solution.

So we need to check whether the following system has non-trivial solutions or not:

$$x_1(\mathbf{v}_1 + \mathbf{v}_2) + x_2(\mathbf{v}_2 + \mathbf{v}_3) + x_3(\mathbf{v}_3 + \mathbf{v}_4) + x_4(2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4) = \mathbf{0}.$$
 (*)

We can re-write (*) as follows:

$$(x_1 + 2x_4)\mathbf{v}_1 + (x_1 + x_2 + x_4)\mathbf{v}_2 + (x_2 + x_3)\mathbf{v}_3 + (x_3 + x_4)\mathbf{v}_4 = \mathbf{0},$$

By the linear independence of the $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ this is equivalent to the system

$$\begin{cases} x_1 + 2x_4 = 0 \\ x_1 + x_2 + x_4 = 0 \\ x_2 + x_3 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

The vectors $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_3 + \mathbf{v}_4, 2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4\}$ are linearly dependent since thie above system has non-trivial solutions:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

A concrete counterexample: $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ in \mathbb{R}^4 .

24. If A^TA is a diagonal matrix, then the columns of A are orthogonal.

Answer: TRUE.

If $A = [\mathbf{a}_1 \, \mathbf{a}_2 \, \cdots \, \mathbf{a}_n]$, then

$$A^{T}A = \begin{bmatrix} -\mathbf{a}_{1}^{T} - \\ -\mathbf{a}_{1}^{T} - \\ \vdots \\ -\mathbf{a}_{n}^{T} - \end{bmatrix} [\mathbf{a}_{1} \ \mathbf{a}_{2} \ \cdots \ \mathbf{a}_{n}] = \begin{bmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{1} \cdot \mathbf{a}_{n} \\ \mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{2} \cdot \mathbf{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n} \cdot \mathbf{a}_{1} & \mathbf{a}_{n} \cdot \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \cdot \mathbf{a}_{n} \end{bmatrix} = [\mathbf{a}_{i} \cdot \mathbf{a}_{j}]_{i,j}$$

In other words: the (i, j)-the entry of $A^T A$ is given by the inner product $\mathbf{a}_i \cdot \mathbf{a}_j$.

Therefore, if $A^TA = D$, with D a diagonal matrix D with (say) entries d_1, d_2, \ldots, d_n on the diagonal, then

$$\mathbf{a}_i \cdot \mathbf{a}_j = \begin{cases} d_j & \text{if } j = i \\ 0 & \text{if } j \neq j \end{cases}$$

25. If a square matrix A satisfies the equation $2A^2 + 3A = 4I$, then A is invertible.

Answer: TRUE.

Solution 1:

If $2A^2 + 3A = 4I$, then $\frac{1}{2}A^2 + \frac{3}{2}A = I$, and therefore also $A(\frac{1}{2}A + \frac{3}{4}I) = I$ and $(\frac{1}{2}A + \frac{3}{4}I)A = I$.

I.e. AB = BA = I where $B = (\frac{1}{2}A + \frac{3}{4}I)$.

This proves that A is invertible (and furthermore $A^{-1} = B = \frac{1}{2}A + \frac{3}{4}I$).

Solution 2 (with determinants): $AB = I \implies \det A \det B = 1 \implies \det A \neq 0 \implies A$ is invertible by the Invertible Matrix Theorem.

Solution 3 (with determinants): $A(2A+3I)=4I \implies \det A \det(2A+3I)=4^n$, where n is the size of A. Therefore $\det A \neq 0$, which implies that A is invertible (again by the

8

Invertible Matrix Theorem.).

Solution 4 (with eigenvalues):

Suppose that λ is an eigenvalue of A: $A\mathbf{x} = \lambda \mathbf{x}$, with $\mathbf{x} \neq 0$. Together with $2A^2 + 3A = 4I$ we see that $(2\lambda^2 + 3\lambda)\mathbf{x} = 4\mathbf{x}$, and therefore $\lambda(2\lambda + 3) = 4$. This implies that $\lambda \neq 0$, i.e that 0 is not an eigenvalue of A. By the Invertible Matrix Theorem it follows that A is invertible.