Resit Linear Algebra (CSE1205), July 4, 2019, 13:30-16:30

- Calculators and formula sheets are **not** allowed.
- Credits: 2 points for questions from Part I (19 questions) and 4 points for questions from Part II (3 questions).
- The final score: Sum and divide by 5.

PART I: MULTIPLE CHOICE QUESTIONS

1. Let (x_1, x_2, x_3) be the unique solution of the system

$$x_2 - 3x_3 = 8$$

 $2x_1 + 2x_2 + 9x_3 = 7$
 $x_1 + 5x_3 = -2$

Then x_1 is equal to:

B. -2 **C.** -1 $\mathbf{D}. \ 0$ **E.** 1

2. The dimension of Nul(A), where $A = \begin{bmatrix} 0 & 1 & 2 & -2 & -1 & 3 & 0 \\ 1 & 3 & 1 & 1 & 2 & 0 & 0 \\ -1 & 3 & 4 & 2 & -2 & -1 & 0 \end{bmatrix}$, is given by:

A. 0 **B.** 1 **D.** 3

3. It is given that

$$A = \begin{bmatrix} \parallel & \parallel & \parallel & \parallel & \parallel \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \\ \parallel & \parallel & \parallel & \parallel & \parallel \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Which of the following sets can be taken as a basis for Col A (for any matrix A satisfying the above condition)?

(I) $\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3\}$

(II) $\{a_2, a_3, a_5\}$

A. None **B.** Only (I) C. Only (II) **D.** (I) and (II)

4. The solution set of the system $A\mathbf{x} = 0$ has a basis that consists of four vectors and A is a 7×9 -matrix. What is the rank of A?

A. 1 **B.** 2

C. 3 **F.** 6 **E.** 5 **D.** 4

G. 7 **H.** There is no sufficient information to determine the rank

5. Suppose that X, Y, Z are 3×3 matrices such that $XYZ = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. Which of the matrices

must be invertible?

C. Only Y A. None B. Only X D. Only Z E. Only X,Y F. Only X,Z G. Only Y,Z $\mathbf{H}. X,Y,Z$

- **6.** Find the determinant det(A) of $A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 2 \end{bmatrix}$:
 - **A.** -8 **B.** -6 **C.** -4 **D.** -2 **E.** 0 **F.** 2 **G.** 4 **H.** 6

.....

For the following two questions, let A = LU be the LU-decomposition of the matrix

$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}$$

7. The first column of L is equal to

A.
$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 B. $\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ C. $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ D. $\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$ E. $\begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$ F. $\begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$ G. $\begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$ H. $\begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix}$

8. The last column of U is equal to

A.
$$\begin{bmatrix} 2\\1\\1 \end{bmatrix}$$
 B. $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$ C. $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ D. $\begin{bmatrix} 2\\-1\\0 \end{bmatrix}$ E. $\begin{bmatrix} -2\\-1\\-\frac{1}{2} \end{bmatrix}$ F. $\begin{bmatrix} -1\\-2\\-1 \end{bmatrix}$ G. $\begin{bmatrix} -2\\-1\\-1 \end{bmatrix}$ H. $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$

.....

For the following two questions consider the following basis of \mathbb{R}^2 :

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$$

9. Find the coordinate vector $[5\mathbf{e}_2]_{\mathcal{B}}$:

$$\mathbf{A.} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad \mathbf{B.} \begin{bmatrix} 0 \\ 5 \end{bmatrix} \qquad \mathbf{C.} \begin{bmatrix} 5 \\ 0 \end{bmatrix} \qquad \mathbf{D.} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathbf{E.} \begin{bmatrix} -5 \\ 10 \end{bmatrix} \quad \mathbf{F.} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{G.} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathbf{H.} \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

10. The matrix $[T]_{\mathcal{B}}$ of the transformation $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} -x_1 - x_2 \\ 4x_1 + 3x_2 \end{bmatrix}$ relative to \mathcal{B} is given by the matrix:

A.
$$\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$$
B. $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ C. $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$ D. $\begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix}$ E. $\begin{bmatrix} 0 & 1 \\ 1 & 5 \end{bmatrix}$ F. $\begin{bmatrix} -3 & -1 \\ 11 & 2 \end{bmatrix}$ G. $\begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$ H. $\begin{bmatrix} -3 & 11 \\ -1 & 2 \end{bmatrix}$

[1 0 0]

11. For which value of
$$a$$
 is 3 an eigenvalue of $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & a \end{bmatrix}$?

A. -3 **B.** -2 **C.** -1 **D.** 0 **E.** 1 **F.** 2 **G.** 3 **H.** 4

- 12. Which of the following statements are always true for square matrices?
 - (I) If A is upper triangular \Longrightarrow A is diagonalizable.
 - (II) If D is a diagonal matrix and $AP = PD \Longrightarrow A$ is diagonalizable.
 - **A.** Both statements are false.
- **B.** Only (I) is true.

C. Only (II) is true.

- **D.** Both statements are true.
- **13.** Find a in the matrix A below such that A is diagonalizable:

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & a & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- **A.** -8
- **B.** -6
- **C.** -4
- **D.** -2 **E.** 0
- **F.** 2
- **G.** 4
- **H.** 6

- For the following two questions consider the matrix $A = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$.
- **14.** The eigenvalues of A are given by
 - **A.** $-1 \pm \sqrt{3}i$
- B. $1 \pm \sqrt{3}i$ C. $\pm 1 + \sqrt{3}i$ D. $1, \sqrt{3}$ F. $1 \pm 3i$ G. $\sqrt{3}, \sqrt{3}$ H. $\sqrt{3} \pm 3i$

- E. $\sqrt{3} \pm i$

- **15.** The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T(\mathbf{x}) = A\mathbf{x}$ is:
 - **A.** A rotation over an angle $\pi/6$ (counter-clockwise), followed by a scaling by factor 2
 - **B.** A rotation over an angle $\pi/6$ (counter-clockwise), followed by a scaling by factor 4
 - C. A rotation over an angle $\pi/3$ (counter-clockwise), followed by a scaling by factor 2
 - **D.** A rotation over an angle $\pi/3$ (counter-clockwise), followed by a scaling by factor 4
 - **E.** A rotation over an angle $\pi/6$ (clockwise), followed by a scaling by factor 2
 - **F.** A rotation over an angle $\pi/6$ (clockwise), followed by a scaling by factor 4
 - **G.** A rotation over an angle $\pi/3$ (clockwise), followed by a scaling by factor 2
 - **H.** A rotation over an angle $\pi/3$ (clockwise), followed by a scaling by factor 4
- **16.** Consider the following statements for orthogonal $n \times n$ matrices U and V:
 - (I) U + V is orthogonal.
 - (II) UV is orthogonal.
 - **A.** Both statements are false.
- **B.** Only (I) is true.

C. Only (II) is true.

- **D.** Both statements are true.
- 17. The distance from $\begin{bmatrix} 1 \\ 5 \\ -10 \end{bmatrix}$ to $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} \right\}$ equals:
 - **A.** 6
- **B.** $3\sqrt{5}$
- **C.** 9
- **D.** 45

- **E.** 16
- **F.** $3\sqrt{14}$
- **G.** 126
- **H.** 10

18. Applying Gram-Schmidt to the vectors $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix}$ we obtain, after

rescaling, as third vector \mathbf{v}_3 :

A.
$$\begin{bmatrix} 1 \\ -7 \\ 0 \\ 4 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 \\ -3 \\ -1 \\ 2 \end{bmatrix}$ **C.** $\begin{bmatrix} 0 \\ -4 \\ 1 \\ 2 \end{bmatrix}$ **D.** $\begin{bmatrix} -1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$ **E.** $\begin{bmatrix} -3 \\ -11 \\ 8 \\ 4 \end{bmatrix}$ **F.** $\begin{bmatrix} 2 \\ 2 \\ 2 \\ 3 \end{bmatrix}$ **G.** $\begin{bmatrix} -5 \\ 3 \\ 8 \\ -4 \end{bmatrix}$ **H.** $\begin{bmatrix} -7 \\ 17 \\ 8 \\ -12 \end{bmatrix}$

19. Determine the least-squares solution of the overdetermined system $A\mathbf{x} = \mathbf{b}$,

where
$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \\ -5 \end{bmatrix}$:

- A. $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ B. $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ C. $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ D. $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ E. $\begin{bmatrix} -2 \\ -1 \end{bmatrix}$ F. $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ G. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ H. There are no least-squares solutions

END OF PART I.

GO TO PART II: TRUE/FALSE QUESTIONS

Resit *Linear Algebra* (CSE1205): True/False Questions July 4, 2019, 13:30-16:30

- In the following questions you are asked to decide whether the statements are true or false.
- If you think the statement is true, explain clearly why.
- Give a counterexample (with explanation) if you think the statement is false.
- Simply writing true or false is not enough.
- Credits: 4 points for every True/False questions.

f the unit v	vectors $\mathbf{u},\mathbf{v}\in$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors $\mathbf{u}+$	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$ectors \ \mathbf{u}, \mathbf{v} \in$	\mathbb{R}^4 are orthog	gonal, then th	he vectors $\mathbf{u}+$	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors $\mathbf{u}+$	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$ ext{rectors } extbf{u}, extbf{v} \in$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors $\mathbf{u}+$	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$ ext{rectors } \mathbf{u}, \mathbf{v} \in$	\mathbb{R}^4 are orthog	gonal, then th	he vectors $\mathbf{u}+$	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors $\mathbf{u}+$	v and u – v	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ue vectors u +	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors u +	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$ ext{rectors } extbf{u}, extbf{v} \in$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors u +	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors u +	v and u-v	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors u +	\mathbf{v} and $\mathbf{u} - \mathbf{v}$	are also orth	nogonal.
f the unit v	$\mathbf{v} \in \mathbf{v}$	\mathbb{R}^4 are orthog	gonal, then th	ne vectors u +	v and u – v	are also orth	nogonal.