Exam Linear Algebra (TI1206M) May 28 2015, 6:30 pm - 9:30 pm

Important: Do not only give the final answers (unless explicitly asked); include all the relevant calculations and arguments to arrive at the answers. Write clearly and formulate in correct English sentences. The use of a calculator is not permitted.

Credits: 7 + 11 + 7 + 10 + 7

1. In this exercise, we examine the following matrix and vectors:

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 4 & h \\ -1 & -3 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad \text{en } \mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

a. For which value(s) of h is **b** an element of $\operatorname{Col} A$?

Consistent system

b. For which value (s) of h is **u** an element of Nul A?

Au = 0 = nullspace

- **c.** For which value(s) of h is the linear transformation T, defined by $T(\mathbf{x}) = A\mathbf{x}$, one-to-one? Start your answer with a definition of 'one-to-one'.
- 2. Use scrap paper to solve this exercise and only give final answers.
 - **a.** Find the LU-factorization of the matrix $\begin{bmatrix} 2 & 3 & 2 \\ -2 & 2 & -4 \\ 1 & -1 & 5 \end{bmatrix}$.
 - **b.** Determine the determinant of the matrix $\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$

Tip: use two approaches to calculate the determinant so you can verify that you get the same answer both times.

c. Give the distance and <u>angle</u> between the vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}$.

Give exact answers (for example: not 1.732 but $\sqrt{3}$); you may leave an arcsin or arccos for 'unusual' angles.

d. Find the least-squares solution of the system $\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 - x_3 = -7 \\ x_2 + x_3 = 1 \\ x_1 - x_2 + x_3 = -2 \end{cases}$ (As a check: the solution is integer!)

3. This exercise focuses on the matrix
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & -1 & -1 \\ 9 & 3 & -5 \end{bmatrix}$$
.

a. Check whether the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 5 \\ -7 \\ 8 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$ are eigenvectors of A .

- **b.** Show that $\lambda = -2$ is an eigenvalue of A and give a basis for the eigenspace for this eigenvalue.
- **c.** Give the characteristic equation of A without first finding the determinant. Also explain (in words) how you arrived at the answer!
- **4.** Given are the following four vectors in \mathbb{R}^4 :

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} 3 \\ -2 \\ 6 \\ 1 \end{bmatrix}$$

Also let $W = \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$.

- **a.** Find an orthogonal basis for W.
- **b.** Give a basis for the orthogonal complement of W.
- **c.** Write the vector \mathbf{y} as a sum of a vector in W and a vector in W^{\perp} .
- **d.** Find the distance from y to W. Explain (in words) the logic behind it it!
- **5.** Give the definitions of the underlined terms below, and prove the propositions:
 - **a.** If A is an <u>invertible matrix</u>, then 2A is also an invertible matrix.
 - **b.** If V and W are <u>subspaces</u> of \mathbb{R}^n , then the intersection $V \cap W$ is also a subspace. (The intersection contains exactly those vectors that lie in both subspaces.)
 - **c.** If $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an <u>orthonormal</u> set of vectors in \mathbb{R}^n and $\mathbf{v}_1 = \mathbf{u}_1 + \mathbf{u}_2$, $\mathbf{v}_2 = \mathbf{u}_1 \mathbf{u}_2$, then the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is orthogonal.

SOLUTIONS

1a This question is equivalent to: for which h is the system $A\mathbf{x} = \mathbf{b}$ consistent? So:

$$\begin{bmatrix} 1 & 2 & -2 & 1 \\ 2 & 4 & h & 3 \\ -1 & -3 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -2 & 1 \\ 0 & 0 & h+4 & 1 \\ 0 & -1 & -1 & 3 \end{bmatrix}$$

The system is only consistent if $h \neq -4$.

1c $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if for all $\mathbf{y} \in \mathbb{R}^m$ the equation $T(\mathbf{x}) = \mathbf{y}$ has at most one solution. This is the case if, and only if, every column of A is a pivot column. The last matrix from the answer to part \mathbf{a} shows that this occurs when $h \neq -4$.

$$\mathbf{2a} \begin{bmatrix} 2 & 3 & 2 \\ -2 & 2 & -4 \\ 1 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 3 \end{bmatrix}.$$

2b Step 1: Reduce with row 4; step 2: reduce with row 3:

$$\begin{vmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{vmatrix}$$

Next expand row 1 and then column 1: $\frac{1}{2}$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{vmatrix} = - \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} = 2$$

2c The distance: $\operatorname{dist}(\mathbf{v}, \mathbf{w}) = ||\mathbf{v} - \mathbf{w}|| = \sqrt{1^2 + 1^2 + (-3)^2 + (-3)^2} = \sqrt{20} = 2\sqrt{5}$. The angle φ : $\cos \varphi = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \cdot ||\mathbf{w}||} = \frac{-4}{\sqrt{4} \cdot \sqrt{8}} = -\frac{1}{\sqrt{2}}$, and the only angle (between 0 and π) with this cosine is: $\varphi = \frac{3}{4}\pi$.

2d Question: the least squares solution
$$\hat{\mathbf{x}}$$
 of $A\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 6 \\ -7 \\ 1 \\ -2 \end{bmatrix} = \mathbf{b}.$

That is: the solution of $A^T A \mathbf{x} = A^T \mathbf{b}$:

$$\begin{bmatrix} A^T A \mid A^T \mathbf{b} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 1 \mid -3 \\ 0 & 3 & 1 \mid 9 \\ 1 & 1 & 4 \mid 12 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 1 \mid -3 \\ 0 & 3 & 1 \mid 9 \\ 0 & 0 & 4 - \frac{2}{3} \mid 10 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 1 \mid -3 \\ 0 & 3 & 1 \mid 9 \\ 0 & 0 & 1 \mid 3 \end{bmatrix}$$

A little more reduction yields: $\hat{\mathbf{x}} = \begin{bmatrix} -2 & 2 & 3 \end{bmatrix}^T$

$$\mathbf{3a} \ A\mathbf{v}_1 = \begin{bmatrix} -10 \\ 14 \\ -16 \end{bmatrix} = (-2)\mathbf{v}_1, \ A\mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix} = (-1)\mathbf{v}_1, \text{ so } \mathbf{v}_1 \text{ is an eigenvector }$$
for $\lambda_1 = -2$, and \mathbf{v}_2 is an eigenvector for $\lambda_2 = -1$.

3b The fact that (-2) is an eigenvalue was shown in part **a**. To find a basis for the eigenspace, solving $(A - (-2)I)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} 1 - (-2) & 1 & -1 & 0 \\ 3 & -1 - (-2) & -1 & 0 \\ 9 & 3 & -5 - (-2) & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & -1 & 0 \\ 3 & 1 & -1 & 0 \\ 9 & 3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

yields two independent eigenvectors, for instance $\mathbf{w}_1 = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

Then $\{\mathbf{w}_1, \mathbf{w}_2\}$ is a basis for the eigenspace.

3c From before we see that: A has the eigenvalue $\lambda_1 = -1$, and the eigenvalue $\lambda_1 = -2$ with an algebraic multiplicity of 2. The characteristic equation is divisible by $\lambda - (-1)$ and by $(\lambda - (-2))^2$. Since the polynomial is of the third degree and the coefficient of λ^3 equals $(-1)^3$, it follows that the characteristic equation is equal to $-(\lambda + 1)(\lambda + 2)^2$.

4a Gram-Schmidt:

$$\mathbf{b}_{1} = \mathbf{a}_{1}, \quad \mathbf{b}_{2} = \mathbf{a}_{2} - \frac{\mathbf{a}_{2} \cdot \mathbf{b}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \, \mathbf{b}_{1} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ -1 \end{bmatrix} - \frac{-2}{3} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \\ -1 \\ -1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -3 \\ -1 \end{bmatrix}$$

We continue with: $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \\ -3 \\ -1 \end{bmatrix}$. Then:

$$\mathbf{b}_3 = \mathbf{a}_3 - \frac{\mathbf{a}_3 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 - \frac{\mathbf{a}_3 \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix} - \frac{4}{3} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} - \frac{5}{15} \begin{bmatrix} 2 \\ 1 \\ -3 \\ -1 \end{bmatrix} = \dots = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Apparently, \mathbf{a}_3 is in the span of \mathbf{a}_1 and \mathbf{a}_2 (looking back, indeed: $\mathbf{a}_3 = 2\mathbf{a}_1 + \mathbf{a}_2$) Possible answer: $\{\mathbf{b}_1, \mathbf{b}_2\}$. (Note: the zero vector does not belong in the basis!)

4b We're looking for a basis for $(\operatorname{span}\{\mathbf{a}_1,\mathbf{a}_2\})^{\perp} = \operatorname{Nul}([\mathbf{a}_1 \ \mathbf{a}_2]^T)$:

$$\left[\begin{array}{ccc|c} 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{ccc|c} 1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 \end{array}\right]$$

The pivots are in the first and third columns (crazy! ;-).

Solving the 'system' (which immediately gives us a basis): $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$.

4c The question is: to write \mathbf{y} as $\mathbf{w} + \mathbf{v}$ with $\mathbf{w} \in W$ and $\mathbf{v} \in W^{\perp}$.

For \mathbf{w} you need to find the (orthogonal) projection of \mathbf{y} on W, which is quickly achieved using the orthogonal basis from part \mathbf{a} .

$$\mathbf{w} = \frac{\mathbf{y} \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 + \frac{\mathbf{y} \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 = \frac{6}{3} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} + \frac{-15}{15} \begin{bmatrix} 2 \\ 1 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 3 \\ 3 \end{bmatrix}$$
 and then $\mathbf{v} = \mathbf{y} - \mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 3 \\ -2 \end{bmatrix}$

4d The distance from \mathbf{y} to W is the (orthogonal) distance from \mathbf{y} to W, which exactly equals the distance from \mathbf{y} to $\hat{\mathbf{y}}$ and $\hat{\mathbf{y}} = \mathbf{w}$:

$$dist(\mathbf{y}, W) = dist(\mathbf{y}, \mathbf{w}) = ||\mathbf{y} - \mathbf{w}|| = ||\mathbf{v}|| = \sqrt{3^2 + 1^2 + 3^2 + (-2)^2} = \sqrt{23}$$

5a A matrix A is invertible if there exists a matrix C so that AC = CA = I. Suppose A is invertible, and take $C = A^{-1}$. Then $(2A) \cdot (\frac{1}{2}C) = 2 \cdot \frac{1}{2} \cdot AC = 2 \cdot \frac{1}{2}I = I$, and $(\frac{1}{2}C) \cdot (2A) = \frac{1}{2} \cdot 2CA = \frac{1}{2} \cdot 2I = I$, so 2A is invertible and has as inverse $\frac{1}{2}C$ $(=\frac{1}{2}A^{-1})$.

5b H is a subspace in \mathbb{R}^n if

- (i) H is not empty. (Also fine: the zero vector is an element of H).
- (ii) If \mathbf{u} and \mathbf{v} are in H then $\mathbf{u} + \mathbf{v}$ is also in H.
- (iii) If $\mathbf{u} \in H$ and c is a real number, then also $c\mathbf{u} \in H$.

Say V and W are subspaces.

They both contain the zero vector, so $\mathbf{0} \in V \cap W$.

For (ii): if **u** and **v** lie in $V \cap W$, then **u** and **v** lie in V as well as in W, and since V and W satisfy (ii), $\mathbf{u} + \mathbf{v}$ lies in V as well as in W, so in $V \cap W$.

For (iii): if **u** is in $V \cap W$ and c is a number, then c**u** lies in V and also in W, because V and W both satisfy (iii), so c**u** lies in $V \cap W$.

5c The definition states: $\mathbf{u}_i \cdot \mathbf{u}_i = 1$, and $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$. So $\mathbf{v}_1 \cdot \mathbf{v}_2 = (\mathbf{u}_1 + \mathbf{u}_2) \cdot (\mathbf{u}_1 - \mathbf{u}_2) = \mathbf{u}_1 \cdot \mathbf{u}_1 - \mathbf{u}_1 \cdot \mathbf{u}_2 + \mathbf{u}_2 \cdot \mathbf{u}_1 - \mathbf{u}_2 \cdot \mathbf{u}_2 = 1 - 0 + 0 - 1 = 0$, and thus $\mathbf{v}_1 \perp \mathbf{v}_2$. \square