Tentamen Lineaire Algebra $\mathbb{T}I1206\mathbb{M}$ 19 mei 2016, 18.30-21.30 uur

Important: do not only give the final answers (unless explicitly asked): include all the relevant calculations and arguments to arrive at the answers. Write clearly and formulate in correct English. The uses of a calculator is not permitted.

Credits: ex.1: 7; ex.2: 9; ex.3: 8; ex.4: 5 (+2); ex.5: 8.

1. Given is the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & \alpha \\ 3 & 1 & \alpha & 1 \\ 4 & 3 & 4 & 4 \end{bmatrix}$$

- **a.** Carefully convert the matrix to reduced echelon form. (This may yield different results for different values of α . Specifically note these.)
- **b.** Give a basis for the column space for $\alpha = 2$.
- **c.** Give a basis for the null space for $\alpha = 1$.
- 2. For this question, only the answers are required!!

 (Hint: for a. and b. your answers are easy to check!)
 - **a.** Calculate the inverse of $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & -1 \\ 1 & 3 & 2 \end{bmatrix}$.
 - **b.** Find the LU-factorization of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ -4 & 0 & -3 \\ 2 & -1 & 5 \end{bmatrix}$
 - C. Give a matrix P and a diagonal matrix D such that $\begin{bmatrix} 2 & -2 \\ 3 & -5 \end{bmatrix} = PDP^{-1}$. (No need to calculate P^{-1} .) P = Eigenspace, D = Eigenvalues
 - d. Calculate the least-squares solution of the system

$$\begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ -13 \end{bmatrix}.$$
 (The answer is an integer.)

3. Given are the following matrix A and the vectors \mathbf{u} and \mathbf{y} :

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 5 \\ 5 \\ 5 \\ -1 \end{bmatrix}.$$

- **a.** Give the definition of a subspace W in \mathbb{R}^n .
- **b.** Show that $\{\mathbf{u}\}$ is a basis for $(\operatorname{Col} A)^{\perp}$.
- **c.** Find the projection of y on Col A.
- **d.** Give the ('standard') matrix of the projection on $\operatorname{Col} A$.
- **4.** Given is the matrix $C = \begin{bmatrix} -3 & 6 & 8 \\ -1 & -1 & -2 \\ 0 & 2 & 3 \end{bmatrix}$ and the vector $\mathbf{w} = \begin{bmatrix} 2i \\ 3+i \\ -2 \end{bmatrix}$.

The characteristic equation is a gift: $p(\lambda) = -(\lambda + 1)(\lambda^2 + 1)$.

- **a.** Give all eigenvalues of C (including complex ones), and for every real eigenvalue also a basis of eigenvectors.
- **b.** Check if \mathbf{w} is an eigenvector of C. If so: give each an eigenvalue.
- **c.** If we diagonalize C complexely, by writing it as PDP^{-1} , with P and D possibly complex matrices, what does the diagonal matrix D look like?
- **d.** [bonus] Find C^{101} . (Also give a clear explanation.)
- **5.** For each of the following statements, indicate whether it is true or false. Also: **provide clear explanations** in **correct** English. Complete sentences!
 - **a.** If V and W are subspaces of \mathbb{R}^n , then the intersection $V \cap W$ is also a subspace of \mathbb{R}^n . (In **3.a.** you already definded 'subspace'!)
 - **b.** [continuation of part **a.**] If $V = \text{span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $W = \text{span}\{\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5\}$ are subspaces of \mathbb{R}^n , with $\mathbf{a}_1, \ldots, \mathbf{a}_5$ five <u>different</u> vectors, all <u>unequal</u> to $\mathbf{0}$, then $\{\mathbf{a}_3\}$ is a basis for the intersection $V \cap W$.
 - **c.** If $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set of vectors in \mathbb{R}^5 , then the set of vectors $\{\mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_1 \mathbf{u}_2, 2\mathbf{u}_3\}$ is also orthogonal.
 - **d.** For every pair of $n \times n$ matrices it is true that: if λ is an eigenvalue of A and μ is an eigenvalue of B, then $\lambda \mu$ is an eigenvalue of AB.
 - **e.** For every pair of matrices (for which the given product exists), it holds that: each vector that lies in the null space of B, also lies in the null space of AB.

SOLUTIONS

1a

$$\begin{bmatrix} \boxed{1} & 1 & 1 & 1 \\ 1 & 2 & 1 & \alpha \\ 3 & 1 & \alpha & 1 \\ 4 & 3 & 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \boxed{1} & 0 & \alpha - 1 \\ 0 & -2 & \alpha - 3 & -2 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 - \alpha \\ 0 & 1 & 0 & \alpha - 1 \\ 0 & 0 & \alpha - 3 & 2\alpha - 4 \\ 0 & 0 & 0 & \alpha - 1 \end{bmatrix}$$

If $\alpha \neq 1, 3$: four pivots, so reduced echelon form is I_4 (identity matrix). If $\alpha = 3$:

$$\begin{bmatrix} 1 & 0 & 1 & 2-3 \\ 0 & 1 & 0 & 3-1 \\ 0 & 0 & 3-3 & 6-4 \\ 0 & 0 & 0 & 3-1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & \boxed{-2} \\ 0 & 0 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

And finally, if $\alpha = 1$:

$$\begin{bmatrix} 1 & 0 & 1 & 2-1 \\ 0 & 1 & 0 & 1-1 \\ 0 & 0 & 1-3 & 2-4 \\ 0 & 0 & 0 & 1-1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

1b From **a.** follows: for $\alpha = 2$ the matrix has four pivots. The column space spans the whole \mathbb{R}^4 , so a possible basis would be the four columns of A, or $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$, the 'standard' basis.

1c For $\alpha = 1$, we calculated the reduced echelon form E of A in part \mathbf{a}_{\bullet} , and Nul A = Nul E. For the solution of $E\mathbf{x} = \mathbf{0}$ you can take x_4 as a free variable.

As basis for Nul A you can take $\left\{ \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} \right\}$. (Hmm, pretty easy, actually.)

2a

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 5 & -1 & 0 & 1 & 0 \\ 1 & 3 & 2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 1 & 3 & -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 5 & -2 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 2 & 1 & -1 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & 6\frac{1}{2} & -3\frac{1}{2} & 1\frac{1}{2} \\ 0 & 1 & 0 & -2\frac{1}{2} & 1\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 2 & 1 & -1 & 1 \end{bmatrix}$$

Scaling the bottom row yields the inverse: $\begin{bmatrix} 6\frac{1}{2} & -3\frac{1}{2} & 1\frac{1}{2} \\ -2\frac{1}{2} & 1\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 13 & -7 & 3 \\ -5 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$

2b
$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$

2c The most obvious answers:

$$P = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \text{ bij } D = \begin{bmatrix} 1 & 0 \\ 0 & -4 \end{bmatrix}, \text{ of } P = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}, \text{ bij } D = \begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2\mathbf{d} \ \hat{\mathbf{x}} = \left[\begin{array}{c} -4\\2 \end{array} \right]$$

3a See textbook, § 2.8.

3b Approach 1: $A^T \mathbf{u} = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 - \mathbf{a}_4 = \mathbf{0}$, so \mathbf{u} is orthogonal to all columns of A, and so is in $(\operatorname{Col} A)^{\perp}$.

If we can show that dim $(\operatorname{Col} A)^{\perp} = 1$, or, that dim $(\operatorname{Col} A) = 3$, then we're there.

Let's reduce:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

shows there are three columns, so dim $(\operatorname{Col} A) = 3$.

Approach 2: you can also 'just' solve $A^T \mathbf{x} = \mathbf{0}$ and check that you get one independent solution that's a multiple of \mathbf{u} .

3c We can use part b.)!

Lemma: $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, for which \mathbf{z} is the projection of \mathbf{y} on $(\operatorname{Col} A)^{\perp}$.

We use the given basis to find the second projection $\{u\}$:

$$\mathbf{z} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{16}{4} \mathbf{u} = \begin{bmatrix} 4 \\ 4 \\ 4 \\ -4 \end{bmatrix} \implies \hat{\mathbf{y}} = \mathbf{y} - \mathbf{z} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}$$

Note: you $\underline{\mathbf{can't}}$ use the 'standard projection formula' for the non-orthogonal columns of A.

3d You can reuse the steps from part c. for any vector x.

'Abstractly': $\hat{\mathbf{x}} = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \mathbf{x} - \frac{\mathbf{u}^T \mathbf{x}}{4} \mathbf{u} = \mathbf{I} \mathbf{x} - \frac{1}{4} \mathbf{u} \mathbf{u}^T \mathbf{x} = (\mathbf{I} - \frac{1}{4} \mathbf{u} \mathbf{u}^T) \mathbf{x}$, so the projection matrix becomes

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 & -1 & -1 & 1 \\ -1 & 3 & -1 & 1 \\ -1 & -1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix}.$$

Less abstract: 'immediately' fill in $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ en $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ in de uitdrukking $\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$

in, en herleid dit tot de vorm $P \mathbf{x}$.

Also possible: column by column: $P(\mathbf{e}_1)$ $P(\mathbf{e}_2)$ $P(\mathbf{e}_3)$ $P(\mathbf{e}_4)$.

4a Easy: the eigenvalues are the zeros of the characteristic equation: $\lambda_1 = -1$, $\lambda_{2,3} = \pm i$. Eigenvectors for λ_1 :

$$\begin{bmatrix} C - (-1)I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -2 & 6 & 8 & 0 \\ -1 & 0 & -2 & 0 \\ 0 & 2 & 4 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

yields eigenvectors $\mathbf{v} = c \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}$. A basis could be $\left\{ \begin{bmatrix} 30 \\ 30 \\ -15 \end{bmatrix} \right\}$.

4b
$$C$$
w = $\begin{bmatrix} 2 \\ 1-3i \\ 2i \end{bmatrix}$ which is equal to $(-i)$ **w**.

So, **w** is an eigenvector for $\lambda = -i$.

4c D has three eigenvalues -1 and $\pm i$ on the diagonal. The order doesn't matter.

4d Take, for example,
$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & +i & 0 \\ 0 & 0 & -i \end{bmatrix}$$
, and a 'fitting' P (such that $C = PDP^{-1}$).

From the fact that $(\pm i)^4 = (-1)^2 = 1$ and also $(-1)^4 = 1$, it follows that $D^4 = I$, $D^{100} = (D^4)^{25} = I$, en $D^{101} = D \cdot D^{100} = D$. Then: $C^{101} = (PDP^{-1})^{101} = PD^{101}P^{-1} = PDP^{-1} = C$.

5a This is true: V and W both contain the zero vector, so $V \cap W$ also does; so $V \cap W \neq \emptyset$. If **u** and **v** are in $V \cap W$, then they are in V as well as W, and since V and W are subspaces, $\mathbf{u} + \mathbf{v}$ is in V as well as W, so in $V \cap W$.

Finally: if **u** is in $V \cap W$ and $c \in \mathbb{R}$, then **u** is in (subspace) V, so also $c\mathbf{u} \in V$; if **u** is in (subspace) W, then also $c\mathbf{u} \in W$, which together shows that $c\mathbf{u} \in V \cap W$.

 $V \cap W$ meets all the requirements for a subspace.

Q.E.D.

5b False: take, for example,
$$\{\mathbf{a}_1, \ldots, \mathbf{a}_5\} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$
 this gives $V = W = \mathbb{R}^3$, so also $V \cap W = \mathbb{R}^3$.

5c This is false: $(\mathbf{u}_1 + \mathbf{u}_2) \cdot (\mathbf{u}_1 - \mathbf{u}_2) = \ldots = \mathbf{u}_1 \cdot \mathbf{u}_1 - \mathbf{u}_2 \cdot \mathbf{u}_2$, which does not have to be equal if \mathbf{u}_1 and \mathbf{u}_2 are 'just' orthogonal (for orthonormal vectors it would hold).

Take, for example
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

5d This is **false**. Take, for exaple, $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then A has eigenvalue $\lambda = 1$ and B has eigenvalue $\mu = 5$, but $AB = \begin{bmatrix} 2 & 0 \\ 0 & 10 \end{bmatrix}$ doesn't have the eigenvalue $1 \cdot 5$.

5e This is **true**. If $\mathbf{v} \in \text{Nul}(B)$, then $B\mathbf{v} = \mathbf{0}$, so automatically also $AB\mathbf{v} = A(B\mathbf{v}) = A\mathbf{0} = \mathbf{0}$, so $\mathbf{v} \in \text{Nul}(AB)$. This shows that always $\text{Nul}(B) \subset \text{Nul}(AB)$.

NORMEN

- 1a 4 pt. Indien geen onderscheid gemaakt naar α : maximaal 2 pt.
- **1b** 1 pt. geen aftrek indien gegeven $Col A = span \{ \dots \}$
- 1c 2 pt. 0.5 aftrek indien niet expliciet als basis gegeven.
- **2a** 2 pt.
- **2b** 2 pt. **1** pt. voor L, **1** pt. voor U
- **2c** 3 pt. **1** pt. voor *D*, **2** pt. voor *P*
- **2d** 2 pt.
- **3a** 1 pt.
- 3b 2 pt. 1 pt. voor checken $A^T \mathbf{u} = \mathbf{0}$, 1 pt. voor controleren dimensie. ('t Kan natuurlijk ook door <u>dom</u>weg op te lossen $A^T \mathbf{x} = \mathbf{0}$.)
- 3c 3 pt. Legio mogelijkheden. Foute formule toegepast bij niet-orthogonale basis: 2 punten **eraf**. Dit geeft overigens het 'foute' antwoord $\begin{bmatrix} 0 & 0 & 2 & 2 \end{bmatrix}^T$.
- **3d** 2 pt. N.b.v.z.
- **4a** 2.5 pt.
- **4b** 1.5 pt.
- **4c** 1 pt.
- **4d** 2 pt.
- 5a 2.5 pt. Checken $V \cap W \neq \emptyset$: **0.5** pt; voor geslotenheid onder som en veelvoud: 2×1 pt.
- **5b** 1 pt.
- **5c** 1 pt.
- **5d** 2 pt.
- **5e** 2 pt.