(Final) Exam Linear Algebra, TI1206M 19 April 2017, 09.00 – 12.00 uur

For most exercises only the answers are required. Use the answer form for exercise 1 to 8. No calculators (nor smart watches nor whatever) are allowed. (Thinking may preclude long calculations.) Credits: exercises 1-7: **19** pt, exc. 8: **8** pt, exc. 9: **9** pt, exc. 10: **7** pt.

- **1.** Find the inverse of the matrix $C = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- **2.** It is given that

$$A = \begin{bmatrix} \| & \| & \| & \| & \| & \| \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \\ \| & \| & \| & \| & \| \end{bmatrix} \sim \begin{bmatrix} \| & \| & \| & \| & \| & \| \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ \| & \| & \| & \| & \| \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 & 2 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

That is: these matrices are row equivalent

- **a.** Give the dimension of the column space of A.
- **b.** Which of the following sets can be taken as a basis for Col A (there may be several):

$$\begin{aligned} & \{\mathbf{a}_1,\,\mathbf{a}_3,\,\mathbf{a}_4,\,\mathbf{a}_5\}, \quad \{\mathbf{a}_1,\,\mathbf{a}_2,\,\mathbf{a}_3,\,\mathbf{a}_5\}, \quad \{\mathbf{a}_2,\,\mathbf{a}_3,\,\mathbf{a}_4,\,\mathbf{a}_5\}, \\ & \{\mathbf{v}_1,\,\mathbf{v}_3,\,\mathbf{v}_4,\,\mathbf{v}_5\}, \quad \{\mathbf{v}_1,\,\mathbf{v}_2,\,\mathbf{v}_3,\,\mathbf{v}_5\}, \quad \{\mathbf{v}_2,\,\mathbf{v}_3,\,\mathbf{v}_4,\,\mathbf{v}_5\}. \end{aligned}$$

- **3.** Suppose det A=3, det B=2 and det C=4 for three 4×4 matrices A,B,C. Insofar as possible find the determinants of the matrices A(B-C), $(ABC)^T$ and $2AB^2C^{-1}$. Give the answer "U" (= "unknown") if a determinant cannot be computed.
- **4.** Find a unit vector that is in the orthogonal complement of Span $\left\{ \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\}$.
- **a.** Find all (also the complex) eigenvalues of the matrix $M = \begin{bmatrix} 1 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & 2 & 1 \end{bmatrix}$. **b.** Give an eigenvector for one of the complex eigenvalues.

Let H be the subspace of \mathbb{R}^4 generated by the vector $\begin{bmatrix} 2\\1\\-2\\2 \end{bmatrix}$.

Write the vector $\begin{bmatrix} 4\\-9\\10\\4 \end{bmatrix}$ as the sum of a vector \mathbf{v} in H and a vector \mathbf{w} in H^{\perp} .

- 7. Consider the (over determined) linear system $\begin{cases} x_1 + 2x_2 &= 1 \\ x_1 + x_2 &= 8 \\ 2x_1 x_2 &= 10 \\ 3x_1 + x_2 &= 0 \end{cases}$
 - a. Give the augmented matrix of the normal equations that you have to solve to find the least-squares solution of this system.
 - **b.** Find the least-squares solution.

- **8.** For each statement indicate whether it is true or false and give a short argument (or a counter example) to support your answer.
 - **a.** Suppose AB = 2I, for two $n \times n$ matrices A and B. Then BA = 2I as well.
 - **b.** Suppose \mathbf{v} is an eigenvector of both the matrix A and the matrix B. Then \mathbf{v} will also be an eigenvector of the matrix AB.
 - **c.** If $\{\mathbf{a}_1, \mathbf{a}_2\}$ is a linearly independent set, then the vectors $\mathbf{a}_1 + \mathbf{a}_2$ and $\mathbf{a}_1 \mathbf{a}_2$ are also linearly independent.
 - **d.** If $\{\mathbf{a}_1, \mathbf{a}_2\}$ is an orthogonal set, then $\{\mathbf{a}_1 + \mathbf{a}_2, \mathbf{a}_1 \mathbf{a}_2\}$ is also an orthogonal set.

For the last two exercises you have to give **complete solutions**.

Answer the parts in the correct order!!

Use the first half of a double A4 sheet for exercise 9 and the other half for exc 10.

 $\textbf{9. It is given that } E = \left[\begin{array}{ccccc} 1 & 0 & -1 & -2 & 1 \\ 2 & 1 & -5 & -2 & 1 \\ -2 & 3 & -7 & 11 & -3 \\ 1 & 1 & -4 & 3 & 6 \end{array} \right] \text{ and } F = \left[\begin{array}{cccccc} 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & -3 & 2 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$

are row equivalent. Furthermore, put $A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 2 & 1 & -5 & -2 \\ -2 & 3 & -7 & 11 \\ 1 & 1 & -4 & 3 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ -3 \\ 6 \end{bmatrix}$.

(Note that $E = [A \ \mathbf{y}]$.)

- **a.** Find a basis for the column space of A. (Explain **what** you do, and **why**.)
- **b.** Find a basis for the null space of A.
- **c.** Check whether the vector $\mathbf{r} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ is in the row space of A.

Now consider the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ with standard matrix A.

- **d.** Check whether \mathbf{y} is in the range of T.
- **e.** Complete the definition: a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if
- **f.** Starting from this definition, check whether this transformation T is onto.
- **10.** Let A be given by $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$, and $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Note that A is a symmetric matrix, so it must be orthogonally diagonalizable.

- **a.** Complete the definition: a matrix A is orthogonally diagonalizable if
- **b.** Show that \mathbf{v}_1 is an eigenvector of A.
- \mathbf{c} . Find all eigenvalues of A, and for each eigenvalue find a basis for the corresponding eigenspace.

Hint: for which value of λ will the matrix $(A - \lambda I)$ clearly have determinant 0?

d. Find matrices P and D that orthogonally diagonalize A.

SOLUTIONS

$$\mathbf{1} \ C^{-1} = \frac{1}{2} \left[\begin{array}{ccc} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right]$$

2a $\dim \operatorname{Col} A = 4$.

2b From **a.** it follows that the column space is ('the whole') \mathbb{R}^4 . So any set of four independent vectors is a basis for Col A.

So all except $\{\mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \mathbf{a}_5\}$, and $\{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_5\}$ are okay.

3 U, 24,
$$2^4 \cdot 3 \cdot 2^2 \cdot \frac{1}{4} = 48$$
 respectively.

$$4 \pm \frac{1}{7} \left[\begin{array}{c} 2\\3\\-6 \end{array} \right].$$

5a
$$\lambda_1 = -2; \quad \lambda_{2,3} = 1 \pm 2i.$$

5b For
$$\lambda = 1 + 2i$$
: $\mathbf{v} = \begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix}$ does the trick.

You can also take the conjugates of both!

$$\mathbf{6} \ \mathbf{q} = \begin{bmatrix} 4 \\ -9 \\ 10 \\ 4 \end{bmatrix} = \mathbf{v} + \mathbf{w} = (-1) \begin{bmatrix} 2 \\ 1 \\ -2 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 \\ -8 \\ 8 \\ 6 \end{bmatrix}$$

7a
$$\begin{bmatrix} 15 & 4 & 56 \\ 4 & 7 & 9 \end{bmatrix}$$

7b
$$\begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

8a TRUE. Namely, if AB = I for a square matrix A, then $B = A^{-1}$, and then also BA = I. In this case, from AB = 2I, it follows that $A(\frac{1}{2}B) = I$, so $\frac{1}{2}B = A^{-1}$, and it follows that $(\frac{1}{2}B)A = \frac{1}{2}AB = I$. Multiplying the last equation by 2 gives the result AB = 2I.

8b TRUE, Simple!!, $A\mathbf{v} = \lambda_1 \mathbf{v}$ and $B\mathbf{v} = \lambda_2 \mathbf{v}$ imply that $AB\mathbf{v} = A\lambda_2 \mathbf{v} = \lambda_1 \lambda_2 \mathbf{v}$, which show that \mathbf{v} is an eigenvector of AB for the eigenvalue $\lambda_1 \lambda_2$.

8c TRUE: Suppose $c_1(\mathbf{a}_1 + \mathbf{a}_2) + c_2(\mathbf{a}_1 - \mathbf{a}_2) = \mathbf{0}$. Reordering terms gives $(c_1 + c_2)\mathbf{a}_1 + (c_1 - c_2)\mathbf{a}_2 = \mathbf{0}$, and from the linear independence of $\{\mathbf{a}_1, \mathbf{a}_2\}$ we may conclude that $(c_1+c_2)=0$ and also $(c_1-c_2)=0$. This implies $c_1=c_2=0$, so that there is no non-trivial combination $c_1(\mathbf{a}_1 + \mathbf{a}_2) + c_2(\mathbf{a}_1 - \mathbf{a}_2)$ that is equal to $\mathbf{0}$.

8d FALSE: $(\mathbf{a}_1 + \mathbf{a}_2) \cdot (\mathbf{a}_1 - \mathbf{a}_2) = \mathbf{a}_1 \cdot \mathbf{a}_1 - \mathbf{a}_2 \cdot \mathbf{a}_2$, and this is only equal to zero if $||\mathbf{a}_1|| = ||\mathbf{a}_2||$. So in general the statement is FALSE.

9a Row reduction does not affect the relations between the columns. Row reducing A leads to F_1 , the matrix with the first four coumns of F. Here the 1st,2nd and 4th column give a maximal set of independent columns, i.e. a basis for $\operatorname{Col} F_1$. Then the corresponding columns of A give a basis for $\operatorname{Col} A$. So (for instance) $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\}$ is a basis for $\operatorname{Col} A$.

9b Row reduction does not change null space, i.e. solutions of $A\mathbf{x} = \mathbf{0}$. Put otherwise: Nul $A = \text{Nul } F_1$, and with just one extra step a basis for the last subspace is quickly found:

$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Here the third 'variable' can be taken as a free variable, which lead to the basis $\left\{ \begin{bmatrix} 1\\3\\1\\0 \end{bmatrix} \right\}$.

 ${f 9c}$ By row reduction the row space doesn't change, and from the equivalence of E and F it

can be immediately seen that $A \sim \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, where **r** is just the third row.

So $\underline{\mathbf{yes}}$ $\mathbf{r} \in \text{row } A$.

9d Since $[A | \mathbf{y}] \sim F$ it follows that the equation $T(\mathbf{x}) = \mathbf{y}$, which is the same as $A\mathbf{x} = \mathbf{y}$ is consistent. So **yes** again, $\mathbf{y} \in \text{Col } A = \text{Range}(T)$.

9e Definition of an onto transformation

9f T is **not** onto. Since A has only three pivot positions, not every system with augmented matric $[A | \mathbf{b}]$ will be consistent.

Other argument: A has only three independent columns, so the range of T, which is the column space of A, is a three-dimensional subspace of \mathbb{R}^4 , and cannot be equal to the whole \mathbb{R}^4 .

10a Definition of orthogonally diagonalizable

10b It is easily seen that $A\mathbf{v}_1 = \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = 7\mathbf{v}_1$,

so \mathbf{v}_1 is an eigenvector of A for the eigenvalue $\lambda_1 = 7$.

10c Following the hint: $A - 1I = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ has clearly (very) dependent columns, and

it is also quickly seen that the null space of (A-1I) has dimension 2,

with (for instance) the basis $\{\mathbf{v}_2, \mathbf{v}_3\} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$

10d To diagonalize A we can use $D = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $P_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$.

To 'orthogonalize', we need an orthonormal basis for the eigenspace for $\lambda_{2,3} = 1$. We can use Gram-Schmidt to fix this:

$$\mathbf{u}_2 = \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

5

Normalizing these vectors and putting them in a matrix gives

one of the (many) possible answer(s): $P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \end{bmatrix}.$

Credits

1.	2 a	2 b	3.	4.	5a	5 b	6.	7a	7b
2	2	2	3	2	2	2	2	2	1
							•	•	
8a	8b	8c	8d	9a	9b	9c	9d	9e	9f
2	2	2	2	2	2	1	2	1	1
10a	10b	10c	10d						
1	1	2	3						