$TI1206M,\, 16-04-2018,\ \ \, Open\,\, Questions$

Name:	Student ID:
Either give a proof or a specific cou	ed to decide whether the statements are true or false .
21. a. Give the definition of linear inc	dependence of a set of vectors.
21. b. If A is an $m \times n$ matrix with l then the null space of A is equal	
· · · · · · · · · · · · · · · · · · ·	, for an $m \times n$ matrix B and an $n \times m$ matrix C , then adependent. (Note: B and C are not necessarily square.)
21. d. Likewise, if $BC = I$, then the	columns of B are linearly independent.
	Write readable!!!

	The column space of H is equal to the orthogonal complement W^{\perp} of W .	
	77° 11	
• .	$H^2 = H$.	
ſ		
	3 H is orthogonally diagonalizable. (Start by giving the definition; good for 1 point.) Hint: What are the eigenvalues of H ?)	
(-	Tible. What are the eigenvalues of II.	
	1 H is a symmetric matrix.	
•		
•		
•		
•		
•		
•		
•		