$TI1206M,\, 16-04-2018,\ \ \, Open\,\, Questions$ | Name: | Student ID: | |---|--| | Either give a proof or a specific cou | ed to decide whether the statements are true or false . | | 21. a. Give the definition of linear inc | dependence of a set of vectors. | | 21. b. If A is an $m \times n$ matrix with l then the null space of A is equal | | | | | | · · · · · · · · · · · · · · · · · · · | , for an $m \times n$ matrix B and an $n \times m$ matrix C , then adependent. (Note: B and C are not necessarily square.) | | | | | 21. d. Likewise, if $BC = I$, then the | columns of B are linearly independent. | | | | | | Write readable!!! | | | | | | The column space of H is equal to the orthogonal complement W^{\perp} of W . | | |-----|---|--| 77° 11 | | | • . | $H^2 = H$. | ſ | | | | | 3 H is orthogonally diagonalizable. (Start by giving the definition; good for 1 point.)
Hint: What are the eigenvalues of H ?) | | | (- | Tible. What are the eigenvalues of II. | 1 H is a symmetric matrix. | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | |