Exam~TI1206M,~05-07-2018,~Open~Questions | Name: write readable and underline your | | le: write readable and underline your <u>last name</u> | ${\bf Student \; ID:}$ | | |--|---|---|--|--| | 21. | | call: The row space of a matrix is the column s
r each part: Give an example or an argumen | | | | a. | 2 | Give an example of a 2×2 matrix A for which | $\operatorname{Row} A = \operatorname{Col} A.$ | | | | | | | | | b. | 3 | Give an example of a 2×2 matrix A for which | $\operatorname{Col} A = \operatorname{Nul} A.$ Write readable!!! | | | | | | | | | c. | 3 | Give an example of a 2×2 matrix A for which | $\operatorname{Nul} A = \operatorname{Row} A.$ | | | 22.a. 2 | Give the definition (according to Lay ;-): λ is an eigenvalue of the matrix A if | | | |---|--|--|--| | Prove or disprove (by an explicit counterexample) the following statements: Tip: First work this out on scratch paper. | | | | | 22.b. 2 | If λ is an eigenvalue of the $(n \times n)$ matrix A , then λ is also an eigenvalue of A^T . | | | | 22.c. 2 | If a 3×3 matrix A has the eigenvalues 1, 2 and -2 , then A is invertible. | | | | 22.d. 3 | If an $n \times n$ matrix A is invertible, then A is diagonalizable. | | |