Exam Linear Algebra TI1206M (resit)

05-07-2018, 18:30-21.30 h

No calculators are allowed. (Thinking may preclude long calculations!!)

Credits: MC questions with 4 alternatives: 1 point, MC questions with more choices: 2 points, questions 23,24: 8 + 9 pts. The final score: (Total + 3)/5.5, rounded to 1 decimal.

Multiple Choice Part

- **1.** 1 Suppose $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Which of these matrices is/are reduced echelon matrices?
 - **a.** Both
- \mathbf{b} . A only
- $\mathbf{c.} B \text{ only}$
- d. None
- **2.** Find all values of h and k for which the system of equations with augmented matrix $\left[\begin{array}{cc|c} 1 & h & 3 \\ 3 & 6 & k \end{array}\right] \quad \text{has a unique solution.}$
 - **a.** h = 2, k = 9 **b.** $h = 2, k \neq 9$
- **c.** $h \neq 2, k \neq 9$ **d.** $h \neq 2, k = 9$

- **e.** $h=2, k\in\mathbb{R}$ **f.** $h\neq 2, k\in\mathbb{R}$
- $\mathbf{g.}\ k=9,\,h\in\mathbb{R}$ $\mathbf{h.}\ k\neq 9,\,h\in\mathbb{R}$
- **3.** 1 Suppose A is a 5×4 matrix and B a 4×3 matrix.

Which of the following statements is/are true:

- If \mathbf{v} is in Col(A), then \mathbf{v} is in Col(AB).
- If w is in Nul(B), then w is in Nul(AB).
- **a.** Both are true
- **b.** only (I) is true
- **c.** only (II) is true
- **d.** Both are false
- **4.** Suppose the equation $(A+B)^TC^T=D$ holds for four invertible $n\times n$ matrices A,B,C,D. 'Solving' for A gives: A =
 - **a.** $(C^T)^{-1}D^T B$ **b.** $C^{-1}D^T B$ **c.** $D^T(C^T)^{-1} B$ **d.** $D^TC^{-1} B$ **e.** $(C^T)^{-1}D^T B^T$ **f.** $C^{-1}D^T B^T$ **g.** $D^T(C^T)^{-1} B^T$ **h.** $D^TC^{-1} B^T$

- Two questions about the three vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ r \\ s \end{bmatrix}$.
 - **5.** Find all values of r and s for which $\mathbf{w} \in \text{span}\{\mathbf{u}, \mathbf{v}\}.$

- **a.** all r, s **b.** r = 2, s = 1 **c.** r = 3 s **d.** s = 2r 3 **e.** s = 5 2r **f.** no r, s

- **6.** Find all values of r and s for which $\mathbf{w} \in (\text{span}\{\mathbf{u},\mathbf{v}\})^{\perp}$.

- **a.** no r, s **b.** r = 0, s = 1 **c.** r = s 1 **d.** r = 1 s **e.** $r = \frac{1}{3}, s = \frac{2}{3}$ **f.** $r = -\frac{2}{3}, s = \frac{1}{3}$ **g.** $r = -\frac{1}{3}, s = \frac{2}{3}$ **h.** $r = -\frac{2}{3}, s = -\frac{1}{3}$

7. Find the matrix of the linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ that first rotates points counterclockwise around the origin through $\frac{1}{4}\pi$ radians and then projects (orthogonally) onto the x_2 -axis.

a.
$$\begin{bmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix}$$

c.
$$\begin{bmatrix} 0 & 0 \\ -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$$

$$\mathbf{a.} \begin{bmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix} \qquad \mathbf{b.} \begin{bmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix} \qquad \mathbf{c.} \begin{bmatrix} 0 & 0 \\ -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix} \qquad \mathbf{d.} \begin{bmatrix} 0 & 0 \\ -\frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix}$$

e.
$$\begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$$

f.
$$\begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix}$$

$$\mathbf{g} \cdot \left[\begin{array}{cc} -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{array} \right]$$

$$\mathbf{e.} \begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix} \quad \mathbf{f.} \begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix} \quad \mathbf{g.} \begin{bmatrix} -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix} \quad \mathbf{h.} \begin{bmatrix} -\frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \end{bmatrix}$$

8. 1 It is given that the matrix A has inverse $D = \begin{bmatrix} 8 & 6 & 2 \\ 3 & 10 & 7 \\ 9 & 6 & 5 \end{bmatrix}$. Further, let B = 3A, $E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and C = EA. Mark each of the two identities as true or false:

(I)
$$B^{-1} = 3D$$
. (II) $C^{-1} = \begin{bmatrix} 9 & 6 & 5 \\ 3 & 10 & 7 \\ 8 & 6 & 2 \end{bmatrix}$.

- **a.** Both are true
- **b.** only (I) is true **c.** only (II) is true **d.** both are false
- **9.** Find the determinant of the matrix $F = \begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$
 - **a.** 0
- **b.** 2

- **h.** 12
- 10. It is given that the 'general' matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ has determinant equal to 7. Find the determinants of $B = \begin{bmatrix} a & b & c \\ 2d+g & 2e+h & 2f+i \\ 3g & 3h & 3i \end{bmatrix}$ and $C = \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$.

- **a.** $\det B = 7$, $\det C = 7$ **b.** $\det B = 21$, $\det C = 7$ **c.** $\det B = 42$, $\det C = 7$

- **d.** $\det B = 7$, $\det C = -7$ **e.** $\det B = 21$, $\det C = -7$ **f.** $\det B = 42$, $\det C = -7$
- Two questions about the matrix $A = \begin{bmatrix} 1 & -1 & 2 & -2 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}$ and the vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.
 - **11.** True or false: (I) $\mathbf{v} \in \operatorname{Col}(A)$; (II) $\mathbf{v} \in \operatorname{Nul}(A)$.
 - a. Both are true **b.** only (I) is true **c.** only (II) is true **d.** both are false
 - True or false: (I) **w** is an eigenvector of A; (II) $\mathbf{w} \in (\operatorname{Col}(A))^{\perp}$.
 - **b.** only (I) is true **c.** only (II) is true **d.** both are false **a.** Both are true

13. \square Suppose the 4×4 (real) matrix A has the eigenvalues $\lambda_{1,2} = 1 \pm i$ and $\lambda_{3,4} = 3 \pm 2i$. What can you say about the following two statements:

- A is (real) diagonalizable. Needs independent eigenvalues
- (II)A is symmetric.

a. Both are true

b. only (I) is true

c. only (II) is true

d. both are false

Look up definitions: similar, symmetric & related terms.

14. 1 Compute $||\mathbf{v}||$ for the vector $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -4 \end{bmatrix}$.

a. 10

c. 30

Suppose $\hat{\mathbf{y}}$ is the orthogonal projection of a vector \mathbf{y} in \mathbb{R}^n onto a subspace W, and \mathbf{w} is an arbitrary vector in W. What can you say about the following two statements:

- $(I) \quad ||\hat{\mathbf{y}}|| \le ||\mathbf{y}||$
- (II) $||\hat{\mathbf{y}} \mathbf{w}|| \le ||\mathbf{y} \mathbf{w}||$

a. Both are true

b. only (I) is true **c.** only (II) is true

d. both are false

16.
1 Which of the matrices $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $F = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is/are orthogonal? inverse = normal

a. Both

 \mathbf{c} . only F

17. Suppose $A = PDP^{-1}$, with $D = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Then it follows that: $A^{20} =$

a. *I*

 $\mathbf{b.} - I$ c. D d. -D e. A f. -A

18. The matrix A is given by $A = \begin{bmatrix} 2 & 0 & 4 \\ 2 & -1 & 2 \\ -2 & 0 & 4 \end{bmatrix}$.

Which of the numbers $\lambda_1 = 3 + 3i$, $\lambda_2 = 1$, $\lambda_3 = -4 + 2i$ is/are eigenvalues of A?

a. none

b. λ_1 **c.** λ_2 **d.** λ_3 **e.** λ_1, λ_2 **f.** λ_1, λ_3 **g.** λ_2, λ_3 **h.** all three

19. The orthogonal projection of the vector $\mathbf{y} = \begin{bmatrix} 3 \\ 5 \\ 27 \end{bmatrix}$ onto the line spanned by $\mathbf{a} = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}$ is given by

a.
$$\frac{26}{104} \begin{bmatrix} -3\\1\\4 \end{bmatrix}$$
 b. $\frac{47}{13} \begin{bmatrix} -3\\1\\4 \end{bmatrix}$ **c.** $4 \begin{bmatrix} -3\\1\\4 \end{bmatrix}$ **d.** $\frac{7}{2} \begin{bmatrix} -3\\1\\4 \end{bmatrix}$ **e.** $\frac{45}{26} \begin{bmatrix} -3\\1\\4 \end{bmatrix}$ **f.** $\frac{105}{26} \begin{bmatrix} -3\\1\\4 \end{bmatrix}$

20. Find the orthogonal projection of the vector $\mathbf{y} = \begin{bmatrix} 4 \\ 7 \\ 4 \end{bmatrix}$ onto the plane spanned by $\mathbf{a}_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ and $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$. Note: \mathbf{a}_1 and \mathbf{a}_2 are not orthogonal.

a.
$$\begin{bmatrix} 4 \\ 3 \\ 6 \end{bmatrix}$$
 b. $\begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$ **c.** $\begin{bmatrix} 4 \\ 11 \\ 2 \end{bmatrix}$ **d.** $\begin{bmatrix} -4 \\ 11 \\ 2 \end{bmatrix}$ **e.** $\begin{bmatrix} -4 \\ 11 \\ 4 \end{bmatrix}$ **f.** $\begin{bmatrix} 8 \\ 14 \\ 8 \end{bmatrix}$

21. Suppose $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2\}$, where the vectors are given by $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Also, let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$.

Which of the sets $\mathcal{B}_1 = \{\mathbf{b}_1, \mathbf{b}_2\}$, $\mathcal{B}_2 = \{\mathbf{b}_1, \mathbf{b}_3\}$ and $\mathcal{B}_3 = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ give bases for the orthogonal complement of W?

- **a.** none **b.** \mathcal{B}_1 **c.** \mathcal{B}_2 **d.** \mathcal{B}_3 **e.** $\mathcal{B}_1, \mathcal{B}_2$ **f.** $\mathcal{B}_1, \mathcal{B}_3$ **g.** $\mathcal{B}_2, \mathcal{B}_3$ **h.** all three
- **22.** It is given that the (symmetric!) matrix $A = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$ has the eigenvalues $\lambda_1 = 5$ and $\lambda_2 = 10$. An *orthogonal* matrix that diagonalizes A is given by

a.
$$\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 b. $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ c. $\frac{1}{5}\begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$ d. $\frac{1}{\sqrt{5}}\begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$

e.
$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 f. $\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$

End of part 1. Now GOTO part 2: Open Questions

"Answers" (The red questions are worth 1 point.)

- **1 b.** *A* only
- **2** f. $h \neq 2, k \in \mathbb{R}$
- **3 c.** (II) only
- **4 b.** $C^{-1}D^T B$
- **5** d. s = 2r 3
- **6 f.** $r = -\frac{2}{3}, s = \frac{1}{3}$
- **7** a. $\begin{bmatrix} 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$
- 8 d. Both are false
- **9 g.** 8
- **10 c.** Both are true $\det B = 42$, $\det C = 7$
- 11 a. Both are true
- **12 b.** only (I) is true
- **13 d.** Both are false.
- **14 d.** $\sqrt{30}$ Quicky!
- **15 a.** Both are true
- **16 d.** none
- 17 f.
- **18** a. none
- **19 c.** $4 \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}$
- **20** a. $\begin{bmatrix} 4 \\ 3 \\ 6 \end{bmatrix}$
- **21 b.** only \mathcal{B}_1
- **22 d.** $\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$