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Exam wi4410 Advanced Discrete Optimization

August 23, 2017, 13:30�16:30

The exam consists of 6 questions. In total you can obtain 60 points. Your grade is calculated by dividing

the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using

a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of

this exam is 8. Good luck!

1. (a) (4 points) Consider the pure integer linear set

S = {x ∈ Z2
+ | x1 + x2 ≤ 4, −5x1 + 11x2 ≥ 0}

and the split disjunction

x2 ≥ 2 or x2 ≤ 1 .

Derive a split inequality for this set given the split disjunction. You may use a graphical

representation of the problem as support in your derivation. State the inequality that you have

derived mathematically, and give a short explanation of how you derived it.

Solution: Take the intersection of the constraint x1 + x2 ≤ 4 with the inequality x2 ≥ 2
of the split disjunction. This intersection is in the point (x1, x2)

T = (2, 2). Similarly, take

the intersection of the constraint −5x1 + 11x2 ≥ 0 with the inequality x2 ≤ 1 of the split

disjunction. This intersection is in the point (x1, x2)
T = (11/5, 1). The line that goes

through these points is: 5x1 + x2 = 12, and it yields the constraint

5x1 + x2 ≤ 12

as a valid split cut.

(b) (3 points) Gomory's mixed-integer cut (GMIC) for the mixed-integer set

S = {(x, y) ∈ Zn
+ × Rp

+ |
n∑

j=1

ajxj +

p∑
j=1

gjyj = b}

is as follows: ∑
fj≤f

fjxj +
∑
fj>f

f(1− fj)
1− f

xj +
∑
aij≥0

aijyj −
∑
aij<0

f

1− f
aijyj ≥ f .
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Derive a GMIC for the mixed-integer set

S = {(x, y) ∈ Z1
+ × R2

+ |
3

2
x1 +

1

7
y1 +

2

7
y2 =

20

7
}

Solution: We have f = 6/7 and fx1 = 1/2. The resulting GMIC is

1

2
x1 +

1

7
y1 +

2

7
y2 ≥

6

7
.
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(c) (3 points) Indicate for each of the claims below whether they are true or false. No further

motivation is needed.

� Branch-and-bound is a polynomial algorithm for integer optimization in �xed dimension.

� The basis in R2 consisting of the basis vectors b1 = (0, 2)T and b2 = (1, 0)T is reduced.

� The determinant of a lattice L depends only on L and not on the choice of basis used in

the representation of L.

(Hint: Recall that a basis in R2 is reduced if

|µ21| = |
(b2)Tb1∗

‖b1∗‖2
| ≤ 1

2

and

‖b2 + µ21b
1∗‖2 ≥ 3

4
‖b1∗‖2 .)

Solution:

� False (see page 37 of Lecture4.pdf)

� False (µ21 = 0 since the two vectors are orthogonal, but the second condition is not

satis�ed as 1 6≥ 3
4 · 4.)

� True (det(L) :=
√
det(BTB, where B is any basis for L.)

2. (a) (4 points) et N = {1, . . . , n} be a set of items. The knapsack polytope is de�ned as

SK := {x ∈ {0, 1}n |
∑

j∈N ajxj ≤ b}. Assume that all input is positive and integer. A set

C ⊆ N is called a cover if
∑

j∈C aj > b. Given a cover C, the extension set E(C) is de�ned

as E(C) = C ∪{j ∈ N \C | aj ≥ ak for all k ∈ C}. Prove that the extended cover inequality∑
j∈E(C) xj ≤ |C| − 1 is valid for SK .

Solution: See page 3 of lecture4.pdf.

(b) (2 points) Given is a knapsack set

26x1 + 23x2 + 19x3 + 15x4 + 14x5 + 11x6 + 8x7 ≤ 43 .

Derive two extended cover inequalities for this set. For each of the inequalities, specify the

cover C, the extension set E(C), and the inequality.

Solution: Take for instance:

� C = {3, 4, 6}, E(C) = {1, 2, 3, 4, 6} yielding the inequality x1+x2+x3+x4+x6 ≤ 2,

� C = {4, 5, 6, 7}, E(C) = {1, 2, 3, 4, 6, 7} yielding the inequality x1 +x2 +x3 +x4 +
x5 + x6 + x7 ≤ 3,
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(c) (4 points) Let N := {1, . . . , n}. Consider the following set:

S≥K := {x ∈ {0, 1}n |
∑
j∈N

ajxj ≥ b} .

Assume that

� aj ∈ Z+ for all j ∈ N ,

� b ∈ Z+,

�

∑
j∈N aj − ak > b for all k ∈ N .

Determine the dimension of conv(S≥K).

Solution: Recall that the dimension of a set S is equal to the a�ne dimension of S minus

one. Notice that the origin belongs to the a�ne hull of conv(S≥K). Hence, the a�ne

dimension of conv(S≥K) is equal to the linear dimension of conv(S≥K) plus one. All the

vectors

xj = 1, ∀j ∈ N \ {k}
xk = 0

for k = 1, . . . , n are feasible due to the assumptions, and they are linearly independent.

There are n = |N | of these vectors. Hence, the a�ne dimension of conv(S≥K) is ≥ n+ 1,

and therefore dim conv(S≥K) ≥ n. Since SK ⊂ Rn, we know that dim conv(S≥K) ≤ n.

Combining the two yields that conv(S≥K) is equal to n.

3. Consider the quadratic assignment problem QAP (A,B):

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

where A = (aij) and B = (bij) are real n× n matrices, and Sn denotes the set of all permutations

of {1, . . . , n}. Recall the following notation:

〈v, u〉− = min
ϕ∈Sn

n∑
i=1

viuϕ(i) v, u ∈ Rn.

(a) (3 points) Given a graph G = (V,E) with |V | = n, we would like to know if G is triangle-free,

i.e. whether G contains K3 as an induced subgraph or not.

Explain how you may answer this question by solving a quadratic assignment problem of the

form QAP (A,B), i.e. de�ne suitable matrices A and B. Motivate your answer.

Solution: De�ne the matrix:

B = (bij) :=



0 −1 −1 0 · · · 0
−1 0 −1 0 · · · 0
−1 −1 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 0 0


,
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and A the adjacency matrix of G.

Consider QAP (A,B):

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

Now G is triangle-free if and only if z∗ > −6.

(b) (7 points) Consider problem QAP (A,B) in the case where the diagonal entries of A and B
are all zero. Denote the o�-diagonal elements in row i of A by âi, e.g.

â1 = [a12 a13 . . . a1n].

Prove that

min
ϕ∈Sn

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) ≥ min
ϕ∈Sn

n∑
i=1

(〈âi, b̂ϕ(i)〉−,

i.e. that the Gilmore-Lawler bound is a lower bound for QAP (A,B).

Solution: The derivation is given in �7.5.1 in the book Assignment Problems. In the slides:

Slide 13 of Lecture 7.

4. (a) (4 points) Consider a given instance of QAP (A,B) where there are vectors u, v ∈ Rn such

that the matrix A = (aij) is given by

aij = ui + vj ∀i, j ∈ {1, . . . , n}.

Show that problem QAP (A,B) reduces to a linear sum assignment problem, i.e. one may

obtain the optimal value as z∗ = minϕ∈Sn
∑n

i=1 ciϕ(i) for some suitable matrix C = (cij). Give
the expression for the matrix C in terms of u, v and B, and motivate your answer.

Solution: Proof of Proposition 8.2 in the book. The expression for C = (cij):

cij = ui

n∑
`=1

bj` + vi

n∑
`=1

b`j .

(b) (3 points) Solve the following instance of QAP (A,B) using any method of your choice:

A =


2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

 , B =


1 2 3 1
2 2 2 1
3 2 2 0
1 1 0 5





Advanced Discrete Optimization, WI4410 page 6 of 8 August 23, 2017

Solution: Note that aij = vi + vj , v = [1 2 3 4]′. Now use Proposition 8.2.

One gets an equivalent LSAP with

C = 2×


7 7 7 7
14 14 14 14
21 21 21 21
28 28 28 28


Thus all permutations are optimal, and z∗ = 140.

(c) (3 points) Consider QAP (A,B), and set

z(ϕ) =
n∑

i=1

n∑
j=1

aijbϕ(i)ϕ(j).

Recall that

Aut(A) =
{
ϕ ∈ Sn : aij = aϕ(i)ϕ(j) ∀i, j

}
.

Prove that, if ϕ ∈ Aut(A) ∪ Aut(B), then z(ϕ) =
∑n

i=1

∑n
j=1 aijbij .

Solution: The required result in the case ϕ ∈ Aut(B) is an immediate consequence of the

de�nition of Aut(B).

So assume ϕ ∈ Aut(A). Now ϕ−1 ∈ Aut(A) since Aut(A) is a group.

Note that

z(ϕ) =
n∑

i=1

n∑
j=1

aijbϕ(i)ϕ(j)

=

n∑
k=1

n∑
l=1

aϕ−1(k)ϕ−1(l)bkl

=

n∑
k=1

n∑
l=1

aklbkl,

as required.

5. In protein interaction networks, each vertex represents a protein while edges represent interaction

between certain proteins. When analysing such networks, one is generally interested in �nding groups

of proteins with a lot of interaction. Formally, such groups are called n-clubs and de�ned as induced

subgraphs with diameter at most n (where the diameter of a (sub)graph is the maximum distance

between any pair of nodes). For the special case of n = 2, the associated problem is formulated as

follows:

2-club

Instance: graph G = (V,E) and number k ∈ N.
Parameter: k
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Question: is there a set S ⊆ V of at least k vertices such that the subgraph of G induced by S
has diameter at most 2?

(a) (5 points) Consider the following reduction rule for the 2-club problem. If there is a vertex v
with degree at least k − 1, then delete all vertices except for v and its neighbours.

Prove that this reduction rule is safe, i.e., the reduced instance is a yes-instance if and only if

the original instance is a yes-instance.

Solution: First suppose that there does exist a vertex v of degree at least k− 1. Then the

original instance is a yes-instance because the subgraph induced by v and its neighbours

has diameter at most 2. The reduced instance is also a yes-instance for the same reason.

If, on the other hand, there does not exist a vertex v of degree at least k − 1, then the

instance is not modi�ed and hence the claim is trivially true.

(b) (5 points) Show that, if the reduction rule above cannot be applied, one can solve the instance

by solving |V | smaller instances with O(k2) vertices each. (Such an approach is called Turing

kernelization.)

Solution: Consider each vertex v in turn. If there exists a 2-club containing v, then this

2-club can only contain vertices with distance at most 2 from v. Since the reduction

rule is not applicable, each vertex has degree at most k − 2. Hence there are at most

1+(k−2)+(k−2)(k−3) vertices with distance at most 2 from v. The subgraph induced

by these vertices is a smaller instance of size O(k2). Moreover, the original instance is a

yes-instance if and only if at least one of the smaller instances is a yes-instance.

6. Consider the following problem.

Dominating Set

Instance: graph G = (V,E) and number k ∈ N.
Parameter: k
Question: Is there a set S ⊆ V of at most k vertices such that each vertex not in S is adjacent to

at least one vertex in S?

(a) (5 points) Show that, for each constant ∆, the Dominating Set problem is FPT for graphs

with maximum degree ∆. Also analyse the running time of your algorithm.

Solution: Consider an arbitrary vertex v. If v is not in S, then at least one of its neighbours
needs to be in S. Hence, we can split into at most ∆ + 1 subproblems, in each subproblem

either v or one of its neighbours is deleted and k is reduced by one, and recurse. If

there are no vertices left then the problem is solved trivially. The overall running time is

O((∆ + 1)k(|V |+ |E|)).

(b) (5 points) Show that the Dominating Set problem is FPT for planar graphs. Again analyse

the running time of your algorithm.
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Solution: Euler's formula states that f + n = m+ 2 with f the number of facets, n the

number of vertices and m the number of edges. Since any edge is in at most two facets

and each facet is surrounded by at least three edges, we have 3f ≤ 2m. Hence,

m = n+ f − 2 ≤ n+
2

3
m− 2

and hence

m ≤ 3n− 6

The sum of the degrees is 2m, so the average degree is

2m

n
≤ 6n− 12

n
< 6.

Since the average degree is less than 6, there must be a vertex with degree at most 5.

Consider a vertex v of degree at most 5. If v is not in S, then at least one of its neighbours

needs to be in S. Hence, we can split into at most 6 subproblems, in each subproblem

either v or one of its neighbours is deleted and k is reduced by one, and recurse. If

there are no vertices left then the problem is solved trivially. The overall running time is

O(6k(|V |+ |E|)).

End of test


