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Exam W14410 Advanced Discrete Optimization
August 23, 2017, 13:30-16:30

The exam consists of 6 questions. In total you can obtain 60 points. Your grade is calculated by dividing
the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using
a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of
this exam is 8. Good luck!

1. (a) (4 points) Consider the pure integer linear set
S={x €7 |z +x2 <4, —bx1+ 1lzy >0}

and the split disjunction
To>2 or x9<1.

Derive a split inequality for this set given the split disjunction. You may use a graphical
representation of the problem as support in your derivation. State the inequality that you have
derived mathematically, and give a short explanation of how you derived it.

Solution: Take the intersection of the constraint z1 + z2 < 4 with the inequality zo > 2
of the split disjunction. This intersection is in the point (x1, z2)7 = (2, 2). Similarly, take
the intersection of the constraint —5x1 + 11x9 > 0 with the inequality zo < 1 of the split
disjunction. This intersection is in the point (z1, z2)7 = (11/5, 1). The line that goes
through these points is: 5x1 + z2 = 12, and it yields the constraint

Sr1 4+ 10 <12

as a valid split cut.

(b) (3 points) Gomory's mixed-integer cut (GMIC) for the mixed-integer set
n p
S ={(z,y) € Z} xRE | Zajznj —I—Zgjyj =b}
j=1 j=1
is as follows:

1_ .
M fimi+ Y f(l _]{J)%‘ + ) agyi - > 1ifaijyj >f.

Iisf Ii>f aij 20 a;;<0
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Derive a GMIC for the mixed-integer set

3 1 2 20
§={(r.y) €ZL xRY | Jar+zon +-pp = )

Solution: We have f =6/7 and f;, = 1/2. The resulting GMIC is

L —l—l —|—2 >6
e = = =-
5 1 7y1 792_7
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(c) (3 points) Indicate for each of the claims below whether they are true or false. No further
motivation is needed.
e Branch-and-bound is a polynomial algorithm for integer optimization in fixed dimension.
e The basis in R? consisting of the basis vectors b' = (0, 2)7 and b = (1, 0)” is reduced.
e The determinant of a lattice L depends only on L and not on the choice of basis used in
the representation of L.

(Hint: Recall that a basis in R? is reduced if

| ‘ — |M’ < 1
P e = 2
and 5
16 + po1b™||> > ZHbl*H2 )
Solution:

e False (see page 37 of Lecture4.pdf)

e False (u21 = 0 since the two vectors are orthogonal, but the second condition is not
satisfied as 1 % 2 - 4.)

e True (det(L) := \/det(BT B, where B is any basis for L.)

2. (a) (4 points) et N ={1,...,n} be a set of items. The knapsack polytope is defined as
Sk ={z € {0,1}" | >_;cn ajz; < b}. Assume that all input is positive and integer. A set
C C N is called a cover if 3, - a; > b. Given a cover C, the extension set E(C) is defined
as E(C) =CU{j € N\C |aj > ay, for all k € C}. Prove that the extended cover inequality
> jerc) % < |C] = 1is valid for Sk.

Solution: See page 3 of lecture4.pdf.

(b) (2 points) Given is a knapsack set
26x1 + 2322 + 1923 + 1524 + 1425 + 11xg + 827 < 43.

Derive two extended cover inequalities for this set. For each of the inequalities, specify the
cover C, the extension set E(C), and the inequality.

Solution: Take for instance:
o C={3,4,6}, E(C)=1{1,2,3,4,6} yielding the inequality z1+z2+x3+z4+26 < 2,

o C={4,5,6,7}, E(C)={1,2,3,4,6,7} yielding the inequality z; + xo + 3+ x4 +
T5 + 26 + a7 < 3,
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(c) (4 points) Let N :={1,...,n}. Consider the following set:
Sz ={x € {0,1}"| Zaja:j > b}.
JEN
Assume that
e a; € Zy forall j € N,
e becZy,
® > jenaj—ag>bforallkeN.

Determine the dimension of conv(SIZ().

Solution: Recall that the dimension of a set S is equal to the affine dimension of S minus
one. Notice that the origin belongs to the affine hull of conv(Sf(). Hence, the affine

dimension of conv(SIZ() is equal to the linear dimension of conv(SIZ{) plus one. All the

vectors

z; = 1,VjeN\{k}
T — 0

for k = 1,...,n are feasible due to the assumptions, and they are linearly independent.
There are n = |N| of these vectors. Hence, the affine dimension of conv(SIZ() is >n+1,
and therefore dim conv(SIZ() > n. Since Sg C R", we know that dim conv(SIZ() < n.
Combining the two yields that conv(SIZ() is equal to n.

3. Consider the quadratic assignment problem QAP(A, B):

n n
F=min Y aibaie)
SOESn .
=1 j=1
where A = (a;5) and B = (b;;) are real n x n matrices, and S,, denotes the set of all permutations
of {1,...,n}. Recall the following notation:
(v,u)” = min vadn v,u € R".
"i=1
(a) (3 points) Given a graph G = (V, E) with |V| = n, we would like to know if G is triangle-free,
i.e. whether G contains K3 as an induced subgraph or not.
Explain how you may answer this question by solving a quadratic assignment problem of the
form QAP(A, B), i.e. define suitable matrices A and B. Motivate your answer.

Solution: Define the matrix:

0 -1 -1 0 0
1 0 -1 0 0
1 -1 00 0
B=(@ij):==| 0 0 0 0 R
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and A the adjacency matrix of G.
Consider QAP(A, B):

n n

Z* = ;Ielgi Z Z aijbgo(i)cp(j)’

i=1 j=1

Now G is triangle-free if and only if z* > —6.

(b) (7 points) Consider problem QAP(A, B) in the case where the diagonal entries of A and B
are all zero. Denote the off-diagonal elements in row i of A by a;, e.g.

dl = [alg ais ... aln].
Prove that
n n n
min Y Y aibp(iype) = min Y ({di b))
L Lt

i.e. that the Gilmore-Lawler bound is a lower bound for QAP(A, B).

Solution: The derivation is given in §7.5.1 in the book Assignment Problems. In the slides:
Slide 13 of Lecture 7.

4. (a) (4 points) Consider a given instance of QAP(A, B) where there are vectors u,v € R" such
that the matrix A = (a;;) is given by

aij =u; +vj  Vi,je{l,...,n}.

Show that problem QAP(A, B) reduces to a linear sum assignment problem, i.e. one may
obtain the optimal value as z* = minges, D> i Cip(;) for some suitable matrix C' = (c;;). Give
the expression for the matrix C in terms of u,v and B, and motivate your answer.

Solution: Proof of Proposition 8.2 in the book. The expression for C' = (c¢;;):

n n
Cij = Uy ijg + v; Z bgj.
(=1 /=1

(b) (3 points) Solve the following instance of QAP(A, B) using any method of your choice:

U s W N
S Ul = W
N O Ot
W N -
N NN
SN N W
OO = =
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Solution: Note that a;; = v; + vj,v = [1 2 3 4]'. Now use Proposition 8.2.
One gets an equivalent LSAP with

O Y
14 14 14 14
21 21 21 21
28 28 28 28

C=2x

Thus all permutations are optimal, and z* = 140.

(c) (3 points) Consider QAP(A, B), and set

2(0) =D aijbeiyeg):

i=1 j=1
Recall that
Aut(A) = {QO eSS, A5 = Qi) (4) VZ,]} .
Prove that, if o € Aut(A) UAut(B), then z(p) = > 1L, >0, aijbij.

Solution: The required result in the case ¢ € Aut(B) is an immediate consequence of the
definition of Aut(B).
So assume ¢ € Aut(A). Now ¢~ € Aut(A) since Aut(A) is a group.
Note that
n n
Ap) = D aibeie)
i=1 j=1
n n
= DD Geme bl
k=1 1=1
n n
= > ) aubu,
k=1 1=1
as required.

5. In protein interaction networks, each vertex represents a protein while edges represent interaction
between certain proteins. When analysing such networks, one is generally interested in finding groups
of proteins with a lot of interaction. Formally, such groups are called n-clubs and defined as induced
subgraphs with diameter at most n (where the diameter of a (sub)graph is the maximum distance
between any pair of nodes). For the special case of n = 2, the associated problem is formulated as
follows:

2-CLUB
Instance: graph G = (V, E) and number k € N.
Parameter: &k
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Question: is there a set S C V of at least k vertices such that the subgraph of G induced by S
has diameter at most 27

(a) (5 points) Consider the following reduction rule for the 2-CLUB problem. If there is a vertex v
with degree at least £ — 1, then delete all vertices except for v and its neighbours.
Prove that this reduction rule is safe, i.e., the reduced instance is a yes-instance if and only if
the original instance is a yes-instance.

Solution: First suppose that there does exist a vertex v of degree at least k — 1. Then the
original instance is a yes-instance because the subgraph induced by v and its neighbours
has diameter at most 2. The reduced instance is also a yes-instance for the same reason.
If, on the other hand, there does not exist a vertex v of degree at least k — 1, then the
instance is not modified and hence the claim is trivially true.

(b) (5 points) Show that, if the reduction rule above cannot be applied, one can solve the instance
by solving |V | smaller instances with O(k?) vertices each. (Such an approach is called Turing
kernelization.)

Solution: Consider each vertex v in turn. If there exists a 2-club containing v, then this
2-club can only contain vertices with distance at most 2 from v. Since the reduction
rule is not applicable, each vertex has degree at most k — 2. Hence there are at most
1+ (k—2)+ (k—2)(k —3) vertices with distance at most 2 from v. The subgraph induced
by these vertices is a smaller instance of size O(k?). Moreover, the original instance is a
yes-instance if and only if at least one of the smaller instances is a yes-instance.

6. Consider the following problem.

DOMINATING SET

Instance: graph G = (V, E) and number k € N.

Parameter: k

Question: Is there a set S C V of at most & vertices such that each vertex not in S is adjacent to
at least one vertex in S?

(a) (5 points) Show that, for each constant A, the DOMINATING SET problem is FPT for graphs
with maximum degree A. Also analyse the running time of your algorithm.

Solution: Consider an arbitrary vertex v. If v is not in S, then at least one of its neighbours
needs to be in S. Hence, we can split into at most A + 1 subproblems, in each subproblem
either v or one of its neighbours is deleted and k is reduced by one, and recurse. If

there are no vertices left then the problem is solved trivially. The overall running time is
O((A + 1) (V] + | E)).

(b) (5 points) Show that the DOMINATING SET problem is FPT for planar graphs. Again analyse
the running time of your algorithm.
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Solution: Euler's formula states that f +n = m + 2 with f the number of facets, n the
number of vertices and m the number of edges. Since any edge is in at most two facets
and each facet is surrounded by at least three edges, we have 3f < 2m. Hence,

2
m:n—l—f—2§n+§m—2

and hence
m<3n-—6

The sum of the degrees is 2m, so the average degree is

2m _ 6n —12
— < ——F < 6.

n n
Since the average degree is less than 6, there must be a vertex with degree at most 5.

Consider a vertex v of degree at most 5. If v is not in S, then at least one of its neighbours
needs to be in S. Hence, we can split into at most 6 subproblems, in each subproblem
either v or one of its neighbours is deleted and k is reduced by one, and recurse. If
there are no vertices left then the problem is solved trivially. The overall running time is
O(6* (V| + | E])).

End of test



