Exam WI4410 Advanced Discrete Optimization

June 26, 2019, 13:30-16:30

The exam consists of 6 questions. In total you can obtain 60 points. Your grade is calculated by dividing the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using a graphical calculator, notes, phone, smart-watch, etc. is **not** permitted. The total number of pages of this exam is 7.

Please, write your answers to questions 1-2, 3-4, and 5-6 on separate sheets of paper. Good luck!

1. (a) (3 points) Given is a set $N = \{1, ..., n\}$. Consider the following knapsack set.

$$X_K = \{ \boldsymbol{x} \in \{0,1\}^n \mid \sum_{j \in N} a_j x_j \le b \}.$$

Assume that $a_j < b$ for all $j \in N$, and that $a_j \in \mathbb{Z}, \ \forall j \in N, b \in \mathbb{Z}$. Determine dim(conv X_K).

Solution: Due to the assumptions, all n-dimensional unit vectors belong to conv X_K , and they are linearly independent. The n unit vectors together with the zero-vector (that also belongs to conv X_K) are affinely independent. We therefore have n+1 affinely independent feasible vectors, and hence $\dim(\operatorname{conv} X_K) = n$. (Here I have also given full points to students who assume $a_j \in \mathbb{Z}_+$ for all $j \in N$. This was actually the intention and is reflected in my solution here.)

(b) (3 points) Consider the knapsack cover inequalities for X_K ,

$$\sum_{j \in C} x_j \le |C| - 1,$$

where $C\subseteq N$ is a subset such that $\sum_{j\in C}a_j>b$. The set $C\subseteq N$ is called a *cover*. Prove that these cover inequalities are valid for conv X_K .

Solution: Let \boldsymbol{x}^R denote a $\{0,1\}^n$ -vector with $x_j^R=1$ if $j\in R$ and $x_j^R=0$ otherwise. Suppose $\boldsymbol{x}^R\in X_K$ and that \boldsymbol{x}^R is such that $\sum_{j\in C}x_j^R\geq |C|$. This implies that $R\cap C=C$. Therefore, $\sum_{j\in R}a_j\geq \sum_{j\in R\cap C}a_j=\sum_{j\in C}a_j>b$, where the inequality is due to the definition of a cover. The fact that $\sum_{j\in R}a_j>b$ contradicts that \boldsymbol{x}^R is feasible.

(c) (2 points) Consider the following knapsack set:

$$X_K^1 = \{ \boldsymbol{x} \in \{0,1\}^7 \mid 7x_1 + 9x_2 + 14x_3 + 5x_4 + 11x_5 + 17x_6 + 4x_7 \le 19 \}.$$

Derive two knapsack cover inequalities for conv $X^1_{\mathcal{K}}.$

Solution: Take for instance $C=\{2,5\}$ with $a_2+a_5=9+11=20>19$ and $C=\{1,2,7\}$ with $a_1+a_2+a_7=7+9+4=20>19$. The corresponding cover inequalities are:

$$x_2 + x_5 \le 1$$

 $x_1 + x_2 + x_7 \le 2$.

(d) (2 points) Given a cover $C\subseteq N$, the extension set E(C) is defined as $E(C):=C\cup\{k\in N\setminus C\mid a_k\geq a_j,\ \forall j\in C\}$. The extended cover inequalities for knapsack sets are:

$$\sum_{j \in E(C)} x_j \le |C| - 1.$$

Derive one extended cover inequality for conv X_K^1 , with X_K^1 given in (c).

Solution: Take for instance $C=\{2,5\}$. This yields $E(C)=C\cup\{3,6\}$ and the extended cover inequality

$$x_2 + x_3 + x_5 + x_6 \le 1.$$

(e) (3 points) Given is a knapsack set

$$X_K = \{ \boldsymbol{x} \in \{0,1\}^6 \mid 35x_1 + 25x_2 + 15x_3 + 20x_4 + 15x_5 + 10x_6 \le 65 \}.$$

The knapsack cover inequality $x_2+x_4\leq 1$ is valid for the set

conv
$$X_K \cap \{x \in \mathbb{R}^6 \mid x_1 = 1, \ x_3 = x_5 = x_6 = 0\}$$
).

Apply maximal lifting to the variable x_5 .

Solution:

$$\alpha x_5 + x_2 + x_4 \le 1,$$

$$\alpha \le 1 - \max\{x_2 + x_4 \mid 25x_2 + 20x_4 \le 65 - 35 - 15 = 15\},$$

$$\alpha \le 1 - 0 = 1.$$

Choose maximal value of α , i.e., $\alpha = 1$. This yields the inequality

$$x_2 + x_4 + x_5 \le 1$$
.

2. (a) (4 points) Consider the following pure integer linear set:

$$S = \{ \boldsymbol{x} \in \mathbb{Z}_+^2 \mid -x_1 + x_2 \le 0, \ x_1 + x_2 \le 3 \}.$$

Derive graphically a split inequality for this set, i.e., given the figure that you draw, give the split disjunction and motivate why the derived inequality belongs to the family of split inequalities.

Solution: Take for instance the split disjunction $x_1 \le 1$ or $x_1 \ge 2$. Let P be the linear relaxation of S. The inequality $x_2 \le 1$ is valid for $P \cap \{x \mid x_1 \le 1\}$ and for $P \cap \{x \mid x_1 \ge 2\}$.

- (b) (3 points) Indicate whether the following statements are "true" or "false". No motivation is needed.
 - (i) Suppose we are given a single-row pure integer set $S = \{x \in \mathbb{Z}_+^n \mid \sum_{j=1}^n a_j x_j = b\}$ with $b \notin \mathbb{Z}$. The Gomory mixed-integer inequality (GMIC) derived for this set is at least as strong as the Gomory fractional cut derived from the same set.
 - (ii) The basis vectors produced by the LLL lattice basis reduction algorithm are nearly orthogonal.
 - (iii) Lenstra's algorithm for integer programming is polynomial, also for varying number of variables.

Solution: (i): True, (ii): True, (iii): False

3. Consider the quadratic assignment problem QAP(A, B):

$$z^* = \min_{\varphi \in \mathcal{S}_n} \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{\varphi(i)\varphi(j)},$$

where $A=(a_{ij})$ and $B=(b_{ij})$ are real $n\times n$ matrices, and \mathcal{S}_n denotes the set of all permutations of $\{1,\ldots,n\}$.

(a) (3 points) A graph G=(V,E) with |V|=n is called *Hamiltonian* if it contains a cycle of length n. Explain how one may decide whether a given graph is Hamiltonian by solving the quadratic assignment problem QAP(A,B) for suitable choices of the matrices A and B.

Solution: Define the matrix B as the adjacency matrix of C_n (the n-cycle), and and A as the adjacency matrix of G.

Consider QAP(A, B):

$$z^* = \max_{\varphi \in \mathcal{S}_n} \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{\varphi(i)\varphi(j)},$$

with optimal permutation φ^* . Now G is Hamiltonian iff $z^* = n$.

(b) (3 points) Consider problem QAP(A,B) in the case where $A=aa^T$ and $B=bb^T$ for some vectors $a,b\in\mathbb{R}^n$ with $n\geq 2$. Show that the eigenvalue bound for problem QAP(A,B) is always zero in this case, but that the optimal value z^* can be arbitrarily large.

Solution: The matrix A only has one nonzero eigenvalue given by $||a||^2$. Similarly the matrix B only has one nonzero eigenvalue $||b||^2$.

Thus the eigenvalue bound is given by

$$0 \cdot ||b||^2 + 0 \cdot 0 + \ldots + 0 \cdot 0 + ||a||^2 \cdot 0 = 0.$$

By letting J denote the all-ones matrix, and A=kJ and B=J for some k>0, then $z^*=kn^2$, that can be arbitrarily large, since k>0 is arbitrary.

(c) (4 points) Let

$$A = \begin{pmatrix} 0 & 4 & 2 \\ 8 & 0 & 6 \\ 12 & 10 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 6 \\ 3 & 0 & 3 \\ 6 & 3 & 0 \end{pmatrix},$$

and calculate the Gilmore-Lawler lower bound for the resulting instance QAP(A,B). (You may solve the linear assignment problem by inspection.) Also state whether the Gilmore-Lawler lower bound equals z^* here, and motivate your answer.

Solution: The Gilmore-Lawler lower bound equals 150 for this instance, and is obtained from the linear assignment problem with matrix:

$$6 \cdot \left(\begin{array}{rrr} 4 & 3 & 4 \\ 10 & 7 & 10 \\ 16 & 11 & 16 \end{array}\right)$$

with optimal permutation $\varphi=(3\ 1\ 2)$ or $\varphi=(1\ 3\ 2)$. The optimal value is $z^*=162$ corresponding to the same permutations. Thus the Gilmore-Lawler lower bound does not equal z^* here.

- 4. In this question we again consider QAP(A,B) as defined in the previous question. Recall that each node of the *polytomic branching tree* corresponds to a partial assignment of facilities to locations, and its child nodes are created by assigning one unassigned facility to each available location in turn.
 - (a) (5 points) Show that the number of nodes in the polytomic branch-and-bound tree equals $\sum_{k=0}^n \binom{n}{k} k!$ and the number of leaves equals n!. Also show #nodes/#leaves $\leq e \approx 2.71828$, with equality in the limit as $n \to \infty$.

Solution:

At level k=0 there is one root node: $1=\binom{n}{0}0!$.

At level k=1 there n children of the root node: $n=\binom{n}{1}1!$.

Each of the n nodes at level 1 has n-1 children.

So at level k=2 there n(n-1) nodes: $n(n-1)=\binom{n}{2}2!$.

Finish the proof by induction: assuming that at level k there are $\binom{n}{k}k!$ nodes, we show that at level k+1 there are $\binom{n}{k+1}(k+1)!$, since each node at level k has n-k children. Indeed,

$$\binom{n}{k}k! \times (n-k) = \frac{n!}{(n-k)!}(n-k) = \frac{n!}{(n-k-1)!} = \binom{n}{k+1}(k+1)!.$$

Thus the total number of nodes is $\sum_{k=0}^{n} \binom{n}{k} k! = \sum_{k=0}^{n} \frac{n!}{k!}$ (summing over all levels of the tree).

Each leaf corresponds to a unique $\varphi \in \mathcal{S}_n$, so there are $|\mathcal{S}_n| = n!$ leaves.

Thus

$$\#\mathsf{nodes}/\#\mathsf{leaves} = \left(\sum_{k=0}^n \frac{n!}{k!}\right)/n! = \sum_{k=0}^n \frac{1}{k!}$$

Recalling that

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

completes the proof.

(b) (3 points) Assume $A=uu^T$ and $B=vv^T$ for nonnegative vectors $u,v\in\mathbb{R}^n_+$. Prove that QAP(A,B) may be solved in polynomial time in this case.

Solution: Proposition 8.9 in the book.

(c) (2 points) Solve the following instance of QAP(A,B) by the method of your choice, and give the optimal value z^* as well as the optimal permutation:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 16 & 12 & 4 \\ 12 & 9 & 3 \\ 4 & 3 & 1 \end{pmatrix}.$$

Solution: One has $A=uu^T$ and $B=vv^T$ with

$$u = [1 \ 2 \ 1]^T, \ v = [4 \ 3 \ 1]^T.$$

Thus (proof of Proposition 8.9):

$$z(\varphi^*) = (\langle u, v \rangle^-)^2 = (1 \cdot 4 + 1 \cdot 3 + 2 \cdot 1)^2 = 9^2 = 81,$$

corresponding to the optimal solution $\varphi^* = (1, 3, 2)$.

5. Consider the following problem.

ODDSUBGRAPH

Instance: graph G = (V, E) and an odd integer k

Parameter: k

Question: does G have a subgraph G' = (V', E') with |E'| = k such that each $v \in V'$ has odd degree in G'?

Consider the following three reduction rules:

- (R1): if G has a matching of size k (a matching is a subset $M \subseteq E$ such that $e \cap f = \emptyset$ for all $e, f \in M$ with $e \neq f$), delete all vertices that are not incident to an edge of the matching;
- (R2): if G has a vertex v of degree at least k, delete all vertices except for v and k of its neighbours;
- \bullet (R3): if G has a vertex of degree 0, delete it.
- (a) (5 points) Prove that each of these reduction rules is safe, i.e. show that a reduced instance is a yes-instance if and only if the original instance is a yes-instance.

Solution: (R1): if G has a matching of size k then the subgraph consisting of this matching has k edges and each vertex in the subgraph has degree 1, which is odd. So the original and the reduced instance are yes-instances.

- (R2): if G has a vertex of degree at least k, the subgraph consisting of this vertex and k of its neighbours has k edges and each vertex in the subgraph has odd degree (1 or k). So, again, the original and reduced instance are yes-instances.
- (R3): a vertex with degree 0 cannot be part of a subgraph in which each vertex has odd degree. So, if the original instance is a yes-instance, the same subgraph can be used to show that the reduced instance is a yes-instance and vice versa.
- (b) (5 points) Prove that, if none of (R1), (R2) and (R3) is applicable, there are at most $2k^2$ vertices left. Hence, ODDSUBGRAPH has a quadratic kernel.

Solution: Take any maximal matching M (which can be found by adding edges to the matching until no edge can be added). Let U denote the set of vertices that are incident to an edge of M. Since (R1) is not applicable, $|M| \leq k$ and hence $|U| \leq 2k$. Each vertex has degree at most k since (R2) is not applicable. Each vertex is either in U or has a neighbour in U because otherwise we could either extend the matching (if there is a vertex not in U with a neighbour that is also not in U) or rule (R3) would be applicable (if there is a vertex with no neighbours). So, in total, there are at most $2k + 2k(k-1) = 2k^2$ vertices left.

6. Consider the following problem.

ColourfulPath

Instance: graph G=(V,E), integer k and function $f:V\to\{1,\ldots,k\}$ (where $1,\ldots,k$ can be interpreted as colours)

Parameter: k

Question: does G have a path P such that for each $i \in \{1, ..., k\}$ there is exactly one vertex v on P with f(v) = i (i.e., a path using each colour exactly once)?

(a) (4 points) Let $C \subseteq \{1,\ldots,k\}$ and $v \in V$. Define a C-path to be a path P containing |C| vertices such that for each $i \in C$ there is exactly one vertex w on P with f(w) = i. Prove that there exists a C-path starting at v if and only if there exists a $C \setminus \{f(v)\}$ -path starting at a neighbour of v.

Solution: First suppose there exists a C-path starting at v. Removing v from the path gives a $C \setminus \{f(v)\}$ -path starting at a neighbour of v.

Now suppose there exists a $C \setminus \{f(v)\}$ -path starting at a neighbour of v. Then this path doesn't use v since it only uses vertices with colours in $C \setminus \{f(v)\}$. So we can add v to this path and obtain a C-path starting at v.

(b) (6 points) Prove that COLOURFULPATH is FPT by describing a dynamic programming algorithm for it. Also determine the running time of your algorithm.

Solution: For $v \in V$ and $C \subseteq \{1, \dots, k\}$, define g(C, v) = 1 if there is a C-path starting in v and g(C, v) = 0 otherwise.

Initialization. For |C|=1: $g(\{i\},v)=1$ if f(v)=i and $g(\{i\},v)=0$ otherwise.

Recursion. For $|C|=2,3,\ldots,k$:

$$g(C, v) = \max_{u \in N(v)} g(C \setminus \{f(v)\}, u),$$

with N(v) the set of neighbours of v.

Solution. The answer is yes if and only if

$$\max_{v \in V} g(\{1, \dots, k\}, v) = 1$$

Correctness follows by part (a). For each vertex $v \in V$ and for each subset of $\{1, \ldots, k\}$, we loop through all (at most |V|-1) neighbours of v. So the running time is $O(2^k|V|^2)$.