
Advanced Discrete Optimization, WI4410 page 1 of 7 June 26, 2019

Exam wi4410 Advanced Discrete Optimization

June 26, 2019, 13:30�16:30

The exam consists of 6 questions. In total you can obtain 60 points. Your grade is calculated by dividing
the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using
a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of
this exam is 7.

Please, write your answers to questions 1-2, 3-4, and 5-6 on separate sheets of paper. Good luck!

1. (a) (3 points) Given is a set N = {1, . . . , n}. Consider the following knapsack set.

XK = {x ∈ {0, 1}n |
∑
j∈N

ajxj ≤ b}.

Assume that aj < b for all j ∈ N , and that aj ∈ Z, ∀j ∈ N, b ∈ Z. Determine dim(conv XK).

Solution: Due to the assumptions, all n-dimensional unit vectors belong to conv XK ,
and they are linearly independent. The n unit vectors together with the zero-vector (that
also belongs to conv XK) are a�nely independent. We therefore have n + 1 a�nely
independent feasible vectors, and hence dim(conv XK) = n. (Here I have also given full
points to students who assume aj ∈ Z+ for all j ∈ N . This was actually the intention and
is re�ected in my solution here.)

(b) (3 points) Consider the knapsack cover inequalities for XK ,∑
j∈C

xj ≤ |C| − 1,

where C ⊆ N is a subset such that
∑

j∈C aj > b. The set C ⊆ N is called a cover. Prove
that these cover inequalities are valid for conv XK .

Solution: Let xR denote a {0, 1}n-vector with xRj = 1 if j ∈ R and xRj = 0 otherwise.

Suppose xR ∈ XK and that xR is such that
∑

j∈C x
R
j ≥ |C|. This implies that R∩C = C.

Therefore,
∑

j∈R aj ≥
∑

j∈R∩C aj =
∑

j∈C aj > b, where the inequality is due to the

de�nition of a cover. The fact that
∑

j∈R aj > b contradicts that xR is feasible.

Advanced Discrete Optimization, WI4410 page 2 of 7 June 26, 2019

(c) (2 points) Consider the following knapsack set:

X1
K = {x ∈ {0, 1}7 | 7x1 + 9x2 + 14x3 + 5x4 + 11x5 + 17x6 + 4x7 ≤ 19} .

Derive two knapsack cover inequalities for conv X1
K .

Solution: Take for instance C = {2, 5} with a2+a5 = 9+11 = 20 > 19 and C = {1, 2, 7}
with a1 + a2 + a7 = 7 + 9 + 4 = 20 > 19. The corresponding cover inequalities are:

x2 + x5 ≤ 1

x1 + x2 + x7 ≤ 2 .

(d) (2 points) Given a cover C ⊆ N , the extension set E(C) is de�ned as E(C) := C ∪ {k ∈
N \ C | ak ≥ aj , ∀j ∈ C}. The extended cover inequalities for knapsack sets are:∑

j∈E(C)

xj ≤ |C| − 1 .

Derive one extended cover inequality for conv X1
K , with X1

K given in (c).

Solution: Take for instance C = {2, 5}. This yields E(C) = C ∪ {3, 6} and the extended
cover inequality

x2 + x3 + x5 + x6 ≤ 1 .

(e) (3 points) Given is a knapsack set

XK = {x ∈ {0, 1}6 | 35x1 + 25x2 + 15x3 + 20x4 + 15x5 + 10x6 ≤ 65} .

The knapsack cover inequality x2 + x4 ≤ 1 is valid for the set

conv XK ∩ {x ∈ R6 | x1 = 1, x3 = x5 = x6 = 0}) .

Apply maximal lifting to the variable x5.

Solution:

αx5 + x2 + x4 ≤ 1 ,

α ≤ 1−max{x2 + x4 | 25x2 + 20x4 ≤ 65− 35− 15 = 15} ,

α ≤ 1− 0 = 1 .

Choose maximal value of α, i.e., α = 1. This yields the inequality

x2 + x4 + x5 ≤ 1 .

Advanced Discrete Optimization, WI4410 page 3 of 7 June 26, 2019

2. (a) (4 points) Consider the following pure integer linear set:

S = {x ∈ Z2
+ | −x1 + x2 ≤ 0, x1 + x2 ≤ 3} .

Derive graphically a split inequality for this set, i.e., given the �gure that you draw, give the split
disjunction and motivate why the derived inequality belongs to the family of split inequalities.

Solution: Take for instance the split disjunction x1 ≤ 1 or x1 ≥ 2. Let P be the linear
relaxation of S. The inequality x2 ≤ 1 is valid for P∩{x | x1 ≤ 1} and for P∩{x | x1 ≥ 2}.

(b) (3 points) Indicate whether the following statements are �true� or �false�. No motivation is
needed.

(i) Suppose we are given a single-row pure integer set S = {x ∈ Zn
+ |
∑n

j=1 ajxj = b} with
b 6∈ Z. The Gomory mixed-integer inequality (GMIC) derived for this set is at least as
strong as the Gomory fractional cut derived from the same set.

(ii) The basis vectors produced by the LLL lattice basis reduction algorithm are nearly ortho-
gonal.

(iii) Lenstra's algorithm for integer programming is polynomial, also for varying number of
variables.

Solution: (i): True, (ii): True, (iii): False

3. Consider the quadratic assignment problem QAP (A,B):

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

where A = (aij) and B = (bij) are real n× n matrices, and Sn denotes the set of all permutations
of {1, . . . , n}.
(a) (3 points) A graph G = (V,E) with |V | = n is called Hamiltonian if it contains a cycle of

length n. Explain how one may decide whether a given graph is Hamiltonian by solving the
quadratic assignment problem QAP (A,B) for suitable choices of the matrices A and B.

Solution: De�ne the matrix B as the adjacency matrix of Cn (the n-cycle), and and A as
the adjacency matrix of G.

Consider QAP (A,B):

z∗ = max
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

with optimal permutation ϕ∗. Now G is Hamiltonian i� z∗ = n.

(b) (3 points) Consider problem QAP (A,B) in the case where A = aaT and B = bbT for some
vectors a, b ∈ Rn with n ≥ 2. Show that the eigenvalue bound for problem QAP (A,B) is
always zero in this case, but that the optimal value z∗ can be arbitrarily large.

Advanced Discrete Optimization, WI4410 page 4 of 7 June 26, 2019

Solution: The matrix A only has one nonzero eigenvalue given by ‖a‖2. Similarly the
matrix B only has one nonzero eigenvalue ‖b‖2.
Thus the eigenvalue bound is given by

0 · ‖b‖2 + 0 · 0 + . . .+ 0 · 0 + ‖a‖2 · 0 = 0.

By letting J denote the all-ones matrix, and A = kJ and B = J for some k > 0, then
z∗ = kn2, that can be arbitrarily large, since k > 0 is arbitrary.

(c) (4 points) Let

A =

 0 4 2
8 0 6
12 10 0

 , B =

 0 3 6
3 0 3
6 3 0

 ,

and calculate the Gilmore-Lawler lower bound for the resulting instance QAP (A,B). (You
may solve the linear assignment problem by inspection.) Also state whether the Gilmore-Lawler
lower bound equals z∗ here, and motivate your answer.

Solution: The Gilmore-Lawler lower bound equals 150 for this instance, and is obtained
from the linear assignment problem with matrix:

6 ·

 4 3 4
10 7 10
16 11 16


with optimal permutation ϕ = (3 1 2) or ϕ = (1 3 2). The optimal value is z∗ = 162
corresponding to the same permutations. Thus the Gilmore-Lawler lower bound does not
equal z∗ here.

4. In this question we again consider QAP (A,B) as de�ned in the previous question. Recall that each
node of the polytomic branching tree corresponds to a partial assignment of facilities to locations,
and its child nodes are created by assigning one unassigned facility to each available location in turn.

(a) (5 points) Show that the number of nodes in the polytomic branch-and-bound tree equals∑n
k=0

(
n
k

)
k! and the number of leaves equals n!. Also show #nodes/#leaves ≤ e ≈ 2.71828,

with equality in the limit as n→∞.

Solution:

At level k = 0 there is one root node: 1 =
(
n
0

)
0!.

At level k = 1 there n children of the root node: n =
(
n
1

)
1!.

Each of the n nodes at level 1 has n− 1 children.

So at level k = 2 there n(n− 1) nodes: n(n− 1) =
(
n
2

)
2!.

Advanced Discrete Optimization, WI4410 page 5 of 7 June 26, 2019

Finish the proof by induction: assuming that at level k there are
(
n
k

)
k! nodes, we show that

at level k + 1 there are
(

n
k+1

)
(k + 1)!, since each node at level k has n− k children.

Indeed, (
n

k

)
k!× (n− k) = n!

(n− k)!
(n− k) = n!

(n− k − 1)!
=

(
n

k + 1

)
(k + 1)!.

Thus the total number of nodes is
∑n

k=0

(
n
k

)
k! =

∑n
k=0

n!
k! (summing over all levels of the

tree).

Each leaf corresponds to a unique ϕ ∈ Sn, so there are |Sn| = n! leaves.

Thus

#nodes/#leaves =

(
n∑

k=0

n!

k!

)
/n! =

n∑
k=0

1

k!

Recalling that

e = lim
n→∞

n∑
k=0

1

k!

completes the proof.

(b) (3 points) Assume A = uuT and B = vvT for nonnegative vectors u, v ∈ Rn
+. Prove that

QAP (A,B) may be solved in polynomial time in this case.

Solution: Proposition 8.9 in the book.

(c) (2 points) Solve the following instance of QAP (A,B) by the method of your choice, and give
the optimal value z∗ as well as the optimal permutation:

A =

 1 2 1
2 4 2
1 2 1

 , B =

 16 12 4
12 9 3
4 3 1

 .

Solution: One has A = uuT and B = vvT with

u = [1 2 1]T , v = [4 3 1]T .

Thus (proof of Proposition 8.9):

z(ϕ∗) = (< u, v >−)2 = (1 · 4 + 1 · 3 + 2 · 1)2 = 92 = 81,

corresponding to the optimal solution ϕ∗ = (1, 3, 2).

5. Consider the following problem.

OddSubgraph

Instance: graph G = (V,E) and an odd integer k
Parameter: k

Advanced Discrete Optimization, WI4410 page 6 of 7 June 26, 2019

Question: does G have a subgraph G′ = (V ′, E′) with |E′| = k such that each v ∈ V ′ has odd
degree in G′?

Consider the following three reduction rules:

• (R1): if G has a matching of size k (a matching is a subset M ⊆ E such that e ∩ f = ∅ for
all e, f ∈M with e 6= f), delete all vertices that are not incident to an edge of the matching;

• (R2): if G has a vertex v of degree at least k, delete all vertices except for v and k of its
neighbours;

• (R3): if G has a vertex of degree 0, delete it.

(a) (5 points) Prove that each of these reduction rules is safe, i.e. show that a reduced instance is
a yes-instance if and only if the original instance is a yes-instance.

Solution: (R1): if G has a matching of size k then the subgraph consisting of this matching
has k edges and each vertex in the subgraph has degree 1, which is odd. So the original
and the reduced instance are yes-instances.

(R2): if G has a vertex of degree at least k, the subgraph consisting of this vertex and k of
its neighbours has k edges and each vertex in the subgraph has odd degree (1 or k). So,
again, the original and reduced instance are yes-instances.

(R3): a vertex with degree 0 cannot be part of a subgraph in which each vertex has odd
degree. So, if the original instance is a yes-instance, the same subgraph can be used to
show that the reduced instance is a yes-instance and vice versa.

(b) (5 points) Prove that, if none of (R1), (R2) and (R3) is applicable, there are at most 2k2

vertices left. Hence, OddSubgraph has a quadratic kernel.

Solution: Take any maximal matching M (which can be found by adding edges to the
matching until no edge can be added). Let U denote the set of vertices that are incident to
an edge of M . Since (R1) is not applicable, |M | ≤ k and hence |U | ≤ 2k. Each vertex has
degree at most k since (R2) is not applicable. Each vertex is either in U or has a neighbour
in U because otherwise we could either extend the matching (if there is a vertex not in U
with a neighbour that is also not in U) or rule (R3) would be applicable (if there is a vertex
with no neighbours). So, in total, there are at most 2k + 2k(k − 1) = 2k2 vertices left.

6. Consider the following problem.

ColourfulPath

Instance: graph G = (V,E), integer k and function f : V → {1, . . . , k} (where 1, . . . , k can be
interpreted as colours)
Parameter: k
Question: does G have a path P such that for each i ∈ {1, . . . , k} there is exactly one vertex v
on P with f(v) = i (i.e., a path using each colour exactly once)?

(a) (4 points) Let C ⊆ {1, . . . , k} and v ∈ V . De�ne a C-path to be a path P containing |C|
vertices such that for each i ∈ C there is exactly one vertex w on P with f(w) = i. Prove
that there exists a C-path starting at v if and only if there exists a C \ {f(v)}-path starting at
a neighbour of v.

Advanced Discrete Optimization, WI4410 page 7 of 7 June 26, 2019

Solution: First suppose there exists a C-path starting at v. Removing v from the path
gives a C \ {f(v)}-path starting at a neighbour of v.

Now suppose there exists a C \ {f(v)}-path starting at a neighbour of v. Then this path
doesn't use v since it only uses vertices with colours in C \ {f(v)}. So we can add v to
this path and obtain a C-path starting at v.

(b) (6 points) Prove that ColourfulPath is FPT by describing a dynamic programming algo-
rithm for it. Also determine the running time of your algorithm.

Solution: For v ∈ V and C ⊆ {1, . . . , k}, de�ne g(C, v) = 1 if there is a C-path starting
in v and g(C, v) = 0 otherwise.

Initialization. For |C| = 1: g({i}, v) = 1 if f(v) = i and g({i}, v) = 0 otherwise.

Recursion. For |C| = 2, 3, . . . , k:

g(C, v) = max
u∈N(v)

g(C \ {f(v)}, u),

with N(v) the set of neighbours of v.

Solution. The answer is yes if and only if

max
v∈V

g({1, . . . , k}, v) = 1

Correctness follows by part (a). For each vertex v ∈ V and for each subset of {1, . . . , k},
we loop through all (at most |V | − 1) neighbours of v. So the running time is O(2k|V |2).

End of test

