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Exam wi4410 Advanced Discrete Optimization

June 28, 2017, 13:30�16:30

The exam consists of 6 questions. In total you can obtain 60 points. Your grade is calculated by dividing

the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using

a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of

this exam is 8. Good luck!

1. Given a set {x ∈ Zn |
∑n

j=1 ajxj = a0} with a0 6∈ Z, the Gomory fractional cut based on this set

is:
n∑

j=1

fjxj ≥ f0,

where fj := aj − bajc and f0 := a0 − ba0c.
Similarly, the Gomory Mixed-Integer Cut based on the set

{(x,y) ∈ Zn × RP |
∑n

j=1 ajxj +
∑p

j=1 gjyj = a0} with a0 6∈ Z, is

∑
fj≤f0

fjxj +
∑
fj>f0

f0(1− fj)
1− f0

xj +
∑
gj>0

gjyj −
∑
gj<0

f0

1− f0
gjyj ≥ f0

Consider the following integer optimization problem:

max 4x1 + 3x2

subject to 2x1 + x2 ≤ 11

−x1 + 2x2 ≤ 6

x1, x2 ≥ 0, integer

Let s1 and s2 be integer slack variables in the above constraints. After solving the LP-relaxation of

the problem we obtain:

z +11
5 s1 +2

5s2 = 133
5

x2 +1
5s1 +2

5s2 = 23
5

x1 +2
5s1 −1

5s2 = 16
5

(a) (4 points) Generate a Gomory fractional cut and a Gomory Mixed-Integer Cut from the last

row of the system of equations above.
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Solution:

f0 =
1

5
, fs1 =

2

5
, fs2 =

4

5
.

Gomory fractional cut:

2

5
s1 +

4

5
s2 ≥

1

5
, or 2s1 + 4s2 ≥ 1 .

Gomory mixed-integer cut:

1
5 ·

3
5

4
5

s1 +
1
5 ·

1
5

4
5

s2 ≥
1

5

or
3

4
s1 +

1

4
s2 ≥ 1 .

(b) (2 points) Which of the two inequalities is stronger? A brief motivation su�ces.

Solution: The two inequalities have the same right-hand side, and each of the coe�cients

in the left-hand side of the GMIC is smaller than or equal to the corresponding coe�cient

in the Gomory fractional cut. Therefore the GMIC is stronger. This also holds in general!

2. Let N := {1, . . . , n}. Consider the following set:

SK := {x ∈ {0, 1}n |
∑
j∈N

ajxj ≤ b} .

Assume that

• aj ∈ Z+ for all j ∈ N ,

• b ∈ Z+,

• aj < b for all j ∈ N ,

(a) (4 points) Determine the dimension of conv(SK).

Solution: Due to the assumptions, each of the unit vectors is feasible. These unit vectors

form, together with the zero-vector, a set of n+ 1 a�nely independent points. Hence, the

dimension of conv(SK) is equal to n.

(b) (3 points) Consider the speci�c knapsack set

SK = {x ∈ {0, 1}4 | 25x1 + 20x2 + 15x3 + 10x4 ≤ 44} .

The knapsack cover inequality x2 + x3 ≤ 1 is valid for the set

conv(SK ∩ {x ∈ R4 | x4 = 1}) .

Apply maximal lifting to the variable x4 and give the resulting valid inequality.
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Solution: Introduce x4 in the inequality. Don't forget that x4 is currently set equal to 1:

x2 + x3 + βx4 ≤ 1 + β .

Now set x4 equal to 0 and apply maximal lifting

β = max{x2 + x3 | 25x1 + 20x2 + 15x3 ≤ 44} − 1 ,

which yields β = 1 and the resulting inequality x2 + x3 + x4 ≤ 2.

(c) (2 points) Consider the speci�c knapsack set

SK = {x ∈ {0, 1}5 | 27x1 + 25x2 + 20x3 + 15x4 + 10x5 ≤ 44} .

The inequality x3 + x4 + x5 ≤ 2 is a valid cover inequality for this knapsack set. Argue why

the inequality

x1 + x2 + x3 + x4 + x5 ≤ 2

is also valid for this set.

Solution: Since both x1 and x2 have larger coe�cients in SK than all the variables in the

cover, x1 and x2 are part of the extension E(C) of the cover C. Recall, E(C) := C ∪{j ∈
N \ C | ak ≥ aj for all j ∈ C}. The inequality∑

j∈E(C)

xj ≤ |C| − 1

is valid for SK , and hence the inequality x1 + x2 + x3 + x4 + x5 ≤ 2 is valid for the given

knapsack set.

(d) (4 points) Let N = {1, . . . , n} be a set of arcs. Consider the single-node �ow set:

SSNF := {(x, y) ∈ Rn
+ × {0, 1}n |

∑
j∈N

xj = b, xj ≤ ujyj} .

A set C ⊆ N is a �ow cover if
∑

j∈C uj > b. Let λ :=
∑

j∈C uj − b and (uj − λ)+ :=
max(uj − λ, 0). Prove that the �ow cover inequality∑

j∈C
xj +

∑
j∈C

(uj − λ)+(1− yj) ≤ b

is valid for conv(SSNF ). (Hint: Consider the case where yj = 1 for all j ∈ C and then the case

where an arbitrary arc k ∈ C is closed.)

Solution: Let yj = 1 for all j ∈ C:
Then (1− yj) = 0 for all j ∈ C and the �ow cover inequality becomes

∑
j∈C xj ≤ b which

is valid by de�nition.

Let yk = 0 and yj = 1 for all j ∈ C \ {k}:
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Now,
∑

j∈C xj ≤ min(b,
∑

j∈C uj − uk). Substitute
∑

j∈C uj by b + λ, which yields∑
j∈C xj ≤ min(b, b+λ−uk) = min(b, b− (uk−λ)) = (b− (uk−λ)+). The coe�cient

for (1− yk) in the �ow cover inequality is precisely (uk − λ)+ and will �count� as soon as

yk takes value 0.

(e) (1 point) Illustrate by a 2-dimensional example why branch-and-bound is not a polynomial-time

algorithms in �xed dimension.

Solution: See slides 33 and 34 of Lecture 4.

3. Consider the quadratic assignment problem QAP (A,B,C):

z∗ = min
ϕ∈Sn

z(ϕ), where z(ϕ) =
n∑

i=1

n∑
j=1

aijbϕ(i)ϕ(j) +
n∑

i=1

n∑
j=1

ciϕ(j),

where A = (aij), B = (bij), and C = (cij) are real n × n matrices, and Sn denotes the set of all

permutations of {1, . . . , n}.
(a) (5 points) Derive an expression for the average value of the objective function, namely

µ(A,B,C) :=
1

n!

∑
ϕ∈Sn

z(ϕ),

in terms of A, B, and C. Motivate your answer. You may not assume that the diagonal entries

of A and B are zero.

Solution: First prove Proposition 7.7 in the book, and then proceed as follows.

Without the assumption aii = bii = 0 ∀i, the average objective value of QAP (A,B,C) is

given by

µ(A,B,C) =
1

n(n− 1)

∑
i 6=j,k 6=l

aijbkl +
1

n

n∑
i,j=1

(cij + aiibjj) .

To prove this, we replace given A and B by the matrices Â and B̂ obtained by setting their

respective diagonals to zero, and replace the given C by Ĉ = (cij + aiibjj).

Then QAP (A,B,C) and QAP (Â, B̂, Ĉ) have the same objective function, since:

z(ϕ) =

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j) +

n∑
i=1

ciϕ(i)

=
∑
i 6=j

aijbϕ(i)ϕ(j) +

n∑
i=1

(
ciϕ(i) + aiibϕ(i)ϕ(i)

)
,

and the last expression is exactly the objective function of QAP (Â, B̂, Ĉ). Applying Propo-
sition 7.7 to QAP (Â, B̂, Ĉ) now yields the required result.
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(b) (5 points) Assume that the values ϕ(i) (i ∈ S) have been �xed for some given set S ⊂
{1, . . . , n}. Derive the corresponding QAP problem, say QAP (A′, B′, C ′), that corresponds to
this node in the polytomic branching tree, i.e. give the matrices A′, B′ and C ′ in terms of A,
B, C and S (and its complement).

Solution: QAP (A,B,C):

min
ϕ∈Sn

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +

n∑
i=1

ciϕ(i)

Split the sums in the objective over S and its complement, say S̄:

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +
n∑

i=1

ciϕ(i)

=
∑
i∈S̄

∑
k∈S̄

aikbϕ(i)ϕ(k) +
n∑

i∈S̄

ciϕ(i)

+
∑
i∈S

∑
k∈S

aikbϕ(i)ϕ(k) +

n∑
i∈S

ciϕ(i)

+
∑
i∈S

∑
k∈S̄

aikbϕ(i)ϕ(k) +
∑
i∈S̄

∑
k∈S

aikbϕ(i)ϕ(k)

Thus we get a new QAP, say QAP (A′, B′, C ′) with A′ = (a′ij), B
′ = (b′ij), C

′ = (c′ij),
and

c′ik =
∑
j∈S

(aijbkj + ajibjk) + cik i, k ∈ S̄,

and

a′ij = aij , b
′
ij = bij i, j ∈ S̄,

and a constant part

const =
∑
i∈S

∑
k∈S

aikbϕ(i)ϕ(k) +

n∑
i∈S

ciϕ(i).

Thus we get:

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +

n∑
i=1

ciϕ(i)

= const +
∑
i,k∈S̄

a′ikb
′
ϕ(i)ϕ(k) +

∑
i∈S̄

c′iϕ(i).

4. This question again concerns QAP (A,B,C) as de�ned in the previous question. Also recall the
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following notation:

〈v, u〉− = min
ϕ∈Sn

n∑
i=1

viuϕ(i) v, u ∈ Rn.

(a) (4 points) Show that, if v1 ≤ v2 ≤ . . . ≤ vn and u1 ≥ u2 ≥ . . . ≥ un, then

〈v, u〉− =
n∑

i=1

uivi.

Solution: See the proof of Proposition 5.8 in the book.

(b) (4 points) It is given that, for any pair of symmetric matrices, say A = A> and B = B>, it
holds that tr(AB) ≥ 〈λ, µ〉−, where λ and µ are vectors containing the eigenvalues of A and

B respectively. Use this fact to show that:

〈λ, µ〉− = min
X∈On

tr(AXBXT ),

where On denotes the set of n× n orthogonal matrices.

Solution: It is given that

tr(AB) ≥ 〈λ, µ〉−.

Since this lower bound is valid for all symmetric A and B and only depends on their

eigenvalues, we have

tr(AXBXT ) ≥ 〈λ, µ〉− ∀X ∈ On.

Thus

min
X∈On

tr(AXBXT ) ≥ 〈λ, µ〉−.

We now prove the reverse inequality. Recall our notation for the spectral decompositions

of A and B:

A =

n∑
i=1

λipip
T
i , B =

n∑
j=1

µjqjq
T
j ,

where pi and qj orthornormal eigenvectors.

Also de�ne the orthogonal matrices P = [p1 p2 . . . pn] and Q = [q1 q2 . . . qn]. Note that
P and Q diagonalise A and B resp.

Also assume w.l.o.g. that λ1 ≤ λ2 ≤ . . . ≤ λn, and µ1 ≥ µ2 ≥ . . . ≥ µn.
Now

〈λ, µ〉− = tr(P TAPQTBQ) = tr(APQTBQP T ) = tr(AXBXT ),

where X = PQT . Noting that X ∈ On completes the proof.

(c) (2 points) Use any method of your choice to solve the following instance of QAP (A,B,C):

A =

 1 2 3
2 4 6
3 6 9

 , B =

 8 12 16
12 18 24
16 24 32

 ,

and C is the 3× 3 zero matrix. Give the optimal value as well as the optimal permutation.
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Solution: A = uuT with u = [1 2 3]T , B = vvT with v =
√

2[2 3 4]′. Therefore, by

Proposition 8.9, z∗ = (< u, v >−)2 = 2(1 · 4 + 2 · 3 + 3 · 2)2 = 2 · 162 = 512, and
ϕ∗ = (3, 2, 1).

5. Consider the following parameterized problem.

Bounded Degree Deletion

Instance: graph G = (V,E) and numbers d, k ∈ N.
Parameters: d and k
Question: is it possible to delete at most k vertices from G such that the resulting graph has

maximum degree at most d?

(a) (4 points) Consider the following reduction rule. If there exists a vertex with degree larger than

d+k, delete this vertex and reduce k by one. Show correctness of this reduction rule, i.e. show

that the obtained instance is a yes-instance if and only if the original instance is a yes-instance.

Solution: If the vertex v with degree larger than d + k is not deleted, then more than k
of its neighbours would need to be deleted to get the degree of v down to d. This is not

allowed since we may only delete k vertices. Hence, v needs to be deleted. This shows that

if the orginal instance is a yes-instance, then the obtained instance is also a yes-instance. To

show the converse, assume that the reduced instance is a yes-instance. Then there exists

a solution to the reduced instance consisting of at most k − 1 vertices. Those vertices

together with v give a solution for the original instance of at most k vertices.

(b) (4 points) Consider the following reduction rule. If there exists an edge connecting two vertices

of degree at most d, delete this edge. Show correctness of this reduction rule.

Solution: Suppose edge {u, v} is deleted. If the original instance is a yes-instance, then

the reduced instance is clearly also a yes-instance: delete exactly the same vertices as in

the original instance (we have only lowered the degrees). Now suppose that the reduced

instance is a yes-instance. Then we can obtain a yes-instance of the original instance by

deleting the same vertices. Adding the edge {u, v} only increases the degrees of u and v
and they can never get bigger than d since they had degree at most d in the original graph.

(c) (4 points) A third reduction rule deletes vertices of degree 0. Show that if none of these three

reduction rules is applicable and there are more than k + k(d + k) + k(d + k)2 vertices left,

then the instance is a no-instance. Hence, the problem Bounded Degree Deletion has a

polynomial kernel.

Solution: Suppose it is a yes-instance. Let U be the set of at most k vertices that are

deleted in some solution. Each vertex of degree bigger than d must have at least one

neighbour in U . Each other vertex has degree at least 1 (by the third reduction rule) and is

hence adjacent to a vertex of degree bigger than d (by the second reduction rule). Hence,

each vertex is in U , has a neighbour in U , or has a neighbour that has a neighbour in U .



Advanced Discrete Optimization, WI4410 page 8 of 8 June 28, 2017

Since there are at most k vertices in U and each vertex has degree at most d+ k (by the

�rst reduction rule), the total number of vertices is at most

k + k(d+ k) + k(d+ k)2.

6. A tournament is a directed graph D = (V,A) with for each pair of vertices u, v ∈ V exactly one of

the arcs (u, v) and (v, u) in A. Consider the following parameterized problem.

Feedback Vertex Set in Tournaments

Instance: tournament D = (V,A) and number k ∈ N.
Parameters: k
Question: is it possible to delete k vertices from D such that the resulting tournament is acyclic

(i.e. has no directed cycle)?

(a) (4 points) Prove that a tournament is acyclic if and only if it has no directed triangle (i.e. a

directed cycle of three vertices).

Solution: The �only if� direction is trivial. Now suppose that a tournament has some di-

rected cycle but no directed triangle. Consider a smallest directed cycle (u1, u2, u3 . . . , up, u1)
with p ≥ 4. Then exactly one of the arcs (u1, u3) and (u3, u1) is in the tournament. If

it is (u1, u3), then (u1, u3, u4, . . . , up, u1) is a smaller directed cycle. If it is (u3, u1), then
(u1, u2, u3, u1) is a directed triangle. In both cases we have obtained a contradiction.

(b) (4 points) Design an FPT algorithm for Feedback Vertex Set in Tournaments and

analyze its running time.

Solution: Check if there is a directed triangle. If no such triangle exists then we are done.

Otherwise, at least one of the three vertices from the triangle needs to be deleted. Hence,

branch into three subproblems, in each subproblem deleting one of the three vertices and

reducing k by one. The running time is O(3kn3), with n = |V | (if we use a brute-force

algorithm for �nding a directed triangle).

End of test


