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Exam wi4410 Advanced Discrete Optimization

July 1, 2020, 09:00–12:00

The exam consists of 8 questions. In total you can obtain 60 points. Your grade is calculated by dividing
the number of points you obtained by 6. This is an open-book exam. It is NOT allowed to discuss with
anyone else. If you have any questions regarding the exam, or technical questions regarding uploading of
your answer, please contact Karen Aardal, k.i.aardal@tudelft.nl. The total number of pages of this exam
is 9. Good luck!

Please review the instructions posted on the announcement page for the course. The most important
points are repeated below.

• Write your answers by hand.

• On your first answer sheet, you should write down the following statement:
“This exam is solely undertaken by myself, without any assistance from others.”
Please sign your name below this statement. Next to this, when scanning your exam, you should
place your student ID.

• Scan your work and submit it as one single pdf-file to Assignments on Brightspace.

The rest of this page is left blank intentionally.
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1. (a) (4 points) Consider the following integer optimization problem:

max z = 5x1 + 8x2

s.t. x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x ∈ Z2
+ .

Let s1 and s2 be integer slack variables in the above constraints. After solving the LP-relaxation
of the problem we obtain:

−z −1.25s1 −0.75ss = −41.25
x1 +2.25s1 −0.25s2 = 2.25

x2 −1.25s1 +0.25s2 = 3.75

Generate a Gomory fractional cut and a Gomory Mixed-Integer Cut from the second row of the
Simplex tableau (the row in which x1 is a basic variable).

Solution: f0 = 0.25, fs1 = 0.25, fs2 = −0.25− (−1) = 0.75. Gomory fractional cut:

0.25s1 + 0.75s2 ≥ 0.25 ,

(or, equivalently:
s1 + 3s2 ≥ 1 .)

Gomory mixed-integer cut (GMIC): Notice here that fs2 > f0. This yields the cut

0.25s1 +
0.25 · 0.25

0.75
s2 ≥ 0.25 .

(or, equivalently:

s1 +
1

3
s2 ≥ 1 .)

(b) (2 points) Which of the two inequalities in the previous exercise (1(a)) is stronger? A brief
motivation suffices.

Solution: Since the right-hand side in both cuts are the same we look at the coefficients of
the left-hand side. Here we have that the coefficient for s1 is the same in both inequalities,
but that the coefficient for s2 is smaller in the GMIC than in the fractional cut, which
implies that the GMIC is stronger. In general it holds that GMIC generated from a certain
row is at least as strong as the Gomory fractional cut generated from the same row.

(c) (4 points) Consider the following integer optimization problem:

maxx2

s.t. − x1 + 2x2 ≤ 2

2x1 + x2 ≤ 10

x ∈ Z2
+
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The extreme points of the LP-relaxation are:(
0
0

)
,

(
5
0

)
,

(
33
5

24
5

)
,

(
0
1

)
.

Derive one split cut that cuts off the non-integer extreme point. Please, mention the split
disjunction that you use explicitly in your answer. You may solve the question graphically, but
you may also derive the inequality using e.g. Lemma 5.4 in the book. (See also slide 33 of
Lecture 2.) In case you solve the question graphically, include the figure with explanations in
your answer.

Solution: Here I give the derivation for the split disjunction x1 ≤ 3 ∨ x1 ≥ 4, since that is a
bit more involved. (Another possibility is to consider the split disjunction x2 ≤ 2 ∨ x2 ≥ 3.)
I use the same notation as in Lemma 5.4. Take π = (1, 0) (since I split on variable x1)
and solve the system of equations

uTA := π .

That yields the vector uT = (−1/5, 2/5), which we then can split in the vectors u+ and
u− with (u+)T = (0, 2/5) and (u−)T = (1/5, 0). We also obtain f = uTb−buTbc = 3/5.
Then, just using inequality (5.6) just above Lemma 5.4 yields the split cut

x1 + 2x2 ≤ 8 .

The disjunction x2 ≤ 2 ∨ x2 ≥ 3 yields the split cut

x2 ≤ 2 .
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2. (a) (4 points) Let N := {1, . . . , n}. Consider the following set:

S≥K := {x ∈ {0, 1}n |
∑
j∈N

ajxj ≥ b} .

Assume that

• aj ∈ Z+ for all j ∈ N ,
• b ∈ Z+,
•
∑

j∈N aj − ak > b for all k ∈ N .

Determine the dimension of conv S≥K .

Solution: Recall that the dimension of a set S is equal to the affine dimension of S minus
one. Notice that the origin belongs to the affine hull of conv(S≥K). Hence, the affine
dimension of conv(S≥K) is equal to the linear dimension of conv(S≥K) plus one. All the
vectors

xj = 1, ∀j ∈ N \ {k}
xk = 0

for k = 1, . . . , n, are feasible due to the assumptions, and they are linearly independent.
There are n = |N | of these vectors. Hence, the affine dimension of conv(S≥K) is ≥ n+ 1,
and therefore dim conv(S≥K) ≥ n. Since SK ⊂ Rn, we know that dim conv(S≥K) ≤ n.
Combining the two yields that conv(S≥K) is equal to n.

(b) (3 points) Given is a ground set N = {1, . . . , n} and a knapsack set SK = {x ∈ {0, 1}n |∑
j∈N ajxj ≤ b}. For a given cover C ⊆ N , the cover inequality∑

j∈C
xj ≤ |C| − 1

is valid for SK . Consider the instance SK = {x ∈ {0, 1}4 | 19x1 + 28x2 + 12x3 + 16x4 ≤ 39}.
The cover inequality x1 + x3 + x4 ≤ 2 is valid for SK ∩ {x | x2 = 0}. Apply maximal lifting to
the variable x2 and give the resulting lifted knapsack cover inequality.

Solution: Lift x2:
αx2 + x1 + x3 + x4 ≤ 2 ,

i.e.,
α ≤ 2− (x1 + x3 + x4) .

Applying maximal lifting yields

α = 2−max{x1 + x3 + x4 | 19x1 + 12x3 + 16x4 ≤ 11} ,

so, α = 2. This gives the lifted inequality: x1 + 2x2 + x3 + x4 ≤ 2.
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(c) (3 points) Let N = {1, . . . , n}. Consider the single-node flow set:

SSNF := {(x, y) ∈ Rn
+ × {0, 1}n |

∑
j∈N

xj = b, xj ≤ ujyj} .

A set C ⊆ N is a flow cover if
∑

j∈C uj > b. Let λ :=
∑

j∈C uj − b and (uj − λ)+ :=
max(uj − λ, 0). The flow cover inequality∑

j∈C
xj +

∑
j∈C

(uj − λ)+(1− yj) ≤ b

is valid for conv SSNF .
Suppose uj = u for all j ∈ N , and suppose that b is not a divisor of any multiple of u. What
is the size of every cover set C that yields a non-trivial flow cover inequality, i.e., a flow cover
inequality that is not part of, or dominated by, inequalities that define the set SSNF . Motivate
your answer.

Solution: The size of every cover set C that yields a non-trivial flow cover inequality is k,
where k is the smallest integer such that k · u > b,. i.e., k = db/ue.
This yields λ = k · u − b and (u − λ)+ = u − k · u + b = b − u(k − 1) > 0, where the
last inequality holds since b is not a divisor of any multiple of u, and since k is the smallest
integer such that k · u > b. Since (u− λ)+ > 0 the inequality is non-trivial.
A smaller size of a cover than k is not possible, as the resulting set would not be a cover. If
we choose a larger set, say a set of size l = k+1, we would obtain λ = l·u−b = (k+1)u−b,
and (u−λ) = u− (k+1)u+b = b−k ·u < 0 as k ·u > b. The flow cover inequality would
then reduce to

∑
j∈C xj ≤ b, since(u−λ)+ = 0 for all j ∈ C. The inequality

∑
j∈C xj ≤ b

is dominated by the defining inequality
∑

j∈C xj = b.

3. (5 points) Consider a linear system Ax = b, where A is a rational matrix of full row rank and b is
a rational vector. Suppose we have an algorithm to compute the Hermite normal form of A as well
as the unimodular matrix that transforms A into its Hermite normal form. How can we use this to
find an integral solution x if it exists, or to establish no such solution exists?

Solution: Let (B|0) be the Hermite normal form of A and let U be the unimodular matrix such
that (B|0) = AU . Since B is lower triangular with nonzero diagonal the system By = b has a
unique solution that can be found by forwardsubstitution. Let

x = U

(
y
0

)
.

Then x is a solution to the original linear system:

Ax = AU

(
y
0

)
= (B|0)

(
y
0

)
= By = b.

If y is integral, then x is an integral solution to Ax = b.
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If there exists an integral solition x to Ax = b, then with(
u
v

)
= U−1x

it follows that u is an integral solution to Bu = b. This shows that if y is not integral, then
Ax = b does not admit an integral solution.

4. (5 points) Show how Minkowski’s convex body theorem can be used to show that a lattice Λ ⊆ R2

has a nonzero lattice point x with ‖x‖1 ≤
√

2 det(Λ). (Here ‖x‖1 = |x1| + |x2| is the 1-norm of
x.) Is there a lattice for which this bound is sharp? If so, give a lattice basis of such a lattice.

Solution: Let
Kr = {x ∈ R2 : ‖x‖1 ≤ r}.

Since Kr is a convex body that is symmetric about the origin, Minkowski’s convex body theorem
asserts that Kr contains a nonzero lattice point from Λ whenever

vol(Kr) ≥ 22 det(Λ).

We have vol(Kr) = 2r2, so Kr contains a lattice point whenever r ≥
√

2 det(Λ). In other
words, Λ contains a nonzero vector x with

‖x‖1 ≤
√

2 det(Λ).

The following lattice shows the bound is sharp:

Λ = Λ(B), with B =

(
1 1/2
0 1/2

)
.

5. (5 points) Consider the following QR-decomposition:

A =

1 −3.5 5
4 −3 −24
7 −2.5 13

 =

1 −3 11
4 −1 −22
7 1 11

1 −0.5 0
0 1 2
0 0 1

 = QR.

Find the matrix B obtained by performing the normalization step of the LLL algorithm to A.

Solution: After substracting the second column twice from the third column we get1 −3.5 12
4 −3 −18
7 −2.5 18

 =

1 −3 11
4 −1 −22
7 1 11

1 −0.5 1
0 1 0
0 0 1

 .
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Adding the first column to the second column and substracting the first column from the third
columns gives 1 −2.5 11

4 1 −22
7 4.5 11

 =

1 −3 11
4 −1 −22
7 1 11

1 0.5 0
0 1 0
0 0 1

 .

Since all off-diagonal entries in 1 0.5 0
0 1 0
0 0 1


are strictly larger than −0.5 and at most 0.5 we are done with the LLL-normalization step. The
matrix B thus reads

B =

1 −2.5 11
4 1 −22
7 4.5 11

 .

6. (5 points) Let P be a polytope of the form {x ∈ Rn : Ax ≤ b} containing an integer point. How
can Lenstra’s algorithm be used to find such an integer point in polynomial time?

Solution: Use linear programming to find

αi = min
x∈P

xi

and
βi = max

x∈P
xi.

Since linear programming is in NP, the binary encoding length of αi and βi will be polynomial in
n and in the binary encoding length of A and b. For i = 1, . . . , n we can now use binary search
and Lenstra’s algorithm to find a value γi such that

P ∩ {x ∈ Rn : xk = γk for k = 1, . . . , i}

contains an integer point. Since the binary encoding lengths of αi and βi are polynomial, the
length βi − αi is at most exponential, hence binary search will give γi in polynomially many
steps.

7. (8 points) Consider the following parameterized problem discussed in the course.

Covering Points by Lines
Instance: n points in the plane and a number k ∈ N.
Parameter: k.
Question: do there exist k straight lines that cover all the points?
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Prove that Covering Points by Lines is FPT by designing a bounded-search tree algorithm
for it. Also analyse the running time of your algorithm.

Hint: observe that the problem is equivalent to partitioning the set of n points into k sets such that
the points in each set lie on a straight line. You do not need to optimize any polynomial factors in
the running time.

Solution: Initialise L1, . . . , Lk = ∅. Pick an arbitrary point p that is not in any of L1, . . . , Lk.
For each i = 1, . . . , k, create a subproblem where p is put into Li. If Li now contains two
points, we modify the subproblem by removing all points on the line through these two points,
removing Li and reducing k by one.

To analyse the running time, note that we branch into at most k subproblems. Moreover, the
search tree is at most 2k deep since a set is removed once it contains at least two points. Hence,
the total running time is O(k2kn).

8. Consider the following parameterized problem discussed in the course.

Temporal Hybridization Number
Given: a collection T of rooted binary phylogenetic trees and a natural number k
Parameter: k
Question: does there exist a temporal phylogenetic network that displays each tree from T and has
reticulation number at most k?

(a) (6 points) Find a temporal phylogenetic network with reticulation number 3 displaying the
rooted phylogenetic trees below.

b a

c

d

e

a e

b

d

c

a e

b c d

d

Solution: The only cherry picking sequences of the trees are (a, b, d, c, e) and (a, b, d, e, c).
Using either of those, and following the proof of the theorem of Humphries, Linz & Semple,
you get the following network
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d

c

e

a

b

(b) (6 points) Consider the following reduction rule. If each tree in T has S as a pendant subtree,
then replace S by a single leaf xS in each tree. The parameter k is unchanged. Prove that this
rule is safe, i.e., that an original instance is a yes-instance if and only if the reduced instance is
a yes-instance.

Solution: We use the characterization of the problem in terms of cherry picking sequences
described in the theorem by Humphries, Linz & Semple.
First suppose the original instance is a yes-instance. Then there exists a weight-k cherry
picking sequence s. All the leaves of S are picked with weight-0, except possibly the leaf x`
of S that is picked last. Let s′ be the cherry picking sequence obtained from s by removing
all leaves of S except x` and replacing x` by xS . This gives a weight-k cherry picking
sequence for the reduced trees.
Now suppose the reduced instance is a yes-instance and let s be a weight-k cherry picking
sequence. Let s′ be the sequence obtained from s by replacing xS by a cherry picking
sequence of S. As before, all leaves of S are picked with weight-0, except possibly the
leaf x` of S that is picked last. Hence, s′ is a weight-k cherry picking sequence for the
original trees.

End of test


