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Exam wi4410 Advanced Discrete Optimization

June 27, 2018, 13:30�16:30

The exam consists of 7 questions. In total you can obtain 60 points. Your grade is calculated by dividing

the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using

a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of

this exam is 6. Good luck!

1. (a) (3 points) Given is the following set of points:

X = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)}

Give two valid formulations P1 and P2 for this set, with the property that P1 ⊂ P2.

Solution: This is one possibility: P1 = {x ∈ R2
+ | x1 + x2 ≤ 2, x2 ≤ 1}, P2 = {x ∈ R2

+ |
5x1 + 4x2 ≤ 10, x2 ≤ 1}. The inequality x1 + x2 ≤ 2 strictly dominates 5x1 + 4x2 ≤ 10.

(b) (3 points) Show that dim(conv(X)) = 2 by exhibiting 3 a�nely independent points in X. Do

not forget to argue why the suggested points are a�nely independent.

Solution: The points (0, 0), (1, 0), (0, 1) are a�nely independent. The unit vectors

(1, 0), (0, 1) are clearly linearly independent, and adding the origin yields 3 a�nely in-

dependent points.

(c) (2 points) The following exercise may be solved graphically. For the set X given in (a), give:

• a valid linear inequality that de�nes a 0-dimensional face of conv(X),

• a valid linear inequality that de�nes a facet of conv(X).

Solution: The inequality x1 ≤ 2 de�nes the 0-dimensional face (2, 0), and the inequality

x1 + x2 ≤ 2 de�nes a factet (1-dimensional face).

2. (a) (3 points) et N = {1, . . . , n} be a set of items. The knapsack polytope is de�ned as

SK := {x ∈ {0, 1}n |
∑

j∈N ajxj ≤ b}. Assume that all input is positive and integer. A set

C ⊆ N is called a cover if
∑

j∈C aj > b. Given is the set

SK = {x ∈ {0, 1}7 | 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19} .
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The inequality x3 + x4 + x5 + x6 ≤ 3 is a facet-de�ning cover inequality for

SK ∩ {x ∈ {0, 1}7 | x1 = x2 = x7 = 0}.

Apply maximal lifting to the variable x1, and write down the inequality that is obtained after

lifting has been applied.

Solution: Find maximal value of α such that the inequality αx1 + x3 + x4 + x5 + x6 ≤ 3
is valid when x1 is not �xed to zero anylonger.

α = 3−max{x3 + x4 + x5 + x6 | 6x3 + 5x4 + 5x5 + 4x6 ≤ 8} = 3− 1 = 2 .

After lifting, the inequality becomes: 2x1 + x3 + x4 + x5 + x6 ≤ 3.

(b) (3 points) Consider again the knapsack polytope SK . Given a cover C, the extension set E(C)
is de�ned as E(C) = C ∪ {j ∈ N \C | aj ≥ ak for all k ∈ C}. Prove that the extended cover

inequality
∑

j∈E(C) xj ≤ |C| − 1 is valid for SK .

Solution: See Exercise 1 from Lecture 3.

(c) (2 points) Gomory's mixed-integer cut (GMIC) for the mixed-integer set

S = {(x, y) ∈ Zn
+ × Rp

+ |
n∑

j=1

ajxj +

p∑
j=1

gjyj = b}

is as follows: ∑
fj≤f

fjxj +
∑
fj>f

f(1− fj)
1− f

xj +
∑
gj≥0

gjyj −
∑
gj<0

f

1− f
gjyj ≥ f .

Derive a GMIC for the mixed-integer set

S = {(x, y) ∈ Z1
+ × R2

+ | x1 +
1

7
y1 −

2

7
y2 =

20

7
}

Solution: f = 6
7 , g1 = 1

7 , g2 = −2
7 ,

f
1−f = 6/7

1/7 = 6. The GMIC for this row is:

1

7
y1 − 6(−2

7
)y2 ≥

6

7
⇒ 1

7
y1 +

12

7
y2 ≥

6

7
⇒ y1 + 12y2 ≥ 6 .

(d) (2 points) Given is the mixed-integer optimization problem:

max z = x+ 2y

s.t.− x+ y ≤ 2

x+ y ≤ 5

2x− y ≤ 4

y ≥ 0, x ∈ Z+
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Derive, graphically, a split inequality for this problem.

Solution: Take for instance the split disjunction x ≤ 1 ∨ x ≥ 2. The inequality y ≤ 3 is

valid for the union of the two resulting polytopes and is therefore a split inequality.

3. (2 points) Indicate whether the following statements are true or false:

• We can determine whether the rational system of inequalities Ax ≤ b has an integer solution

in polynomial time if the dimension is �xed.

• Suppose we are given a single-row pure integer set S = {x ∈ Zn
+ |
∑n

j=1 ajxj = b} with b 6∈ Z.
The Gomory fractional cut derived for this set is at least as strong as the Gomory mixed-integer

cut (GMIC) derived from the same set.

Solution: True, False

4. Consider the quadratic assignment problem QAP (A,B):

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

where A = (aij) and B = (bij) are real n× n matrices, and Sn denotes the set of all permutations

of {1, . . . , n}.
(a) (3 points) Given a graph G = (V,E) with |V | = n and an integer k < n, the densest k-

subgraph problem is to �nd the densest induced subgraph in G with exactly k vertices. (I.e. to

�nd the induced subgraph with k vertices having the maximum number of edges.)

Explain how you may obtain a densest k-subgraph of G by solving a quadratic assignment

problem of the form QAP (A,B), i.e. de�ne suitable matrices A and B. Motivate your answer.

In particular, explain how the densest k-subgraph may be constructed from the solution of

QAP (A,B).

Solution: De�ne the matrix:

B = (bij) :=



1 · · · 1 0 · · · 0
...

. . .
... 0 · · · 0

1 · · · 1 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 0 0


,

where the upper left k × k principal submatrix is the k × k all-ones matrix, and A the

adjacency matrix of G.

Consider QAP (A,B):

z∗ = max
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),
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with optimal permutation ϕ∗. Now the densest k-subgraph is induced by the vertices with

labels ϕ∗(1), . . . , ϕ∗(k).

(b) (3 points) Consider problem QAP (A,B) in the case where A and B are diagonal matrices.

Show that the optimal value of QAP (A,B) coincides with the eigenvalue bound in this case.

Solution: Assume the diagonal entries of A and B are aii and bii respectively. Then these

are also the respective eigenvalues of A and B, so that the eigenvalue bound becomes

min
ϕ∈Sn

n∑
i=1

aiibϕ(i)ϕ(i).

On the other hand, QAP (A,B) reduces to

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j),

= min
ϕ∈Sn

n∑
i=1

aiibϕ(i)ϕ(i),

which is the same expression as the eigenvalue bound.

(c) (4 points) Let

A =

 0 2 1
4 0 3
6 5 0

 , B =

 0 1 2
1 0 1
2 1 0

 ,

and calculate the Gilmore-Lawler lower bound for the resulting instance QAP (A,B). (You

may solve the linear assignment problem by inspection.) Also state whether the Gilmore-Lawler

lower bound equals z∗ here, and motivate your answer.

Solution: The Gilmore-Lawler lower bound equals 25 for this instance, and is obtained

from the linear assignment problem with matrix: 4 3 4
10 7 10
16 11 16


with optimal permutaion ϕ = (3 1 2) or ϕ = (1 3 2). The optimal value is z∗ = 27
corresponding to the same permutations.

5. In this question we again consider QAP (A,B) as de�ned in the previous question.

(a) (3 points) Show that:

z∗ = min
X∈Xn

tr(AXBTXT ),

where Xn is the set of n× n permutation matrices.
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Solution: Solution sketched on Slide 19 of 1st lecture.

(b) (3 points) Use your result in the previous exercise to show that QAP (A,B) may be solved in

polynomial time if A = AT (symmetric) and B = −BT (skew-symmetrix).

Solution: In this case z(ϕ) = 0 for all permutations ϕ ∈ Sn.

(c) (4 points) Show that

z∗ = tr(S) + tr(T ) + min
X∈Xn

{
xT (B ⊗A− I ⊗ S − T ⊗ I)x | x = vec(X)

}
,

where T and S are any �xed, symmetric matrices. (Hint: �rst show that tr(AXBTXT ) =
vec(X)T (B ⊗A)vec(X)).

Solution: See Slide 7 of Lecture 3, and Exercise 1 of Week 3.

6. Consider the following variant of the Closest String problem (where dh(s, s′) is the number of

positions where sequence s and sequence s′ di�er).

Instance: sequences s1, . . . , sk of length m over an alphabet Σ and a number d ∈ N, with

dh(s1, s2) = 2d.
Parameter: d
Question: does there exist a sequence s of length m such that dh(s, si) ≤ d for all 1 ≤ i ≤ k?

(a) (2 points) Show that for each solution sequence s and for each position p holds that s(p) =
s1(p) or s(p) = s2(p) (or both).

Solution: Suppose s(p) 6= s1(p) and s(p) 6= s2(p). Then, since dh(s, s1) ≤ d, there are at
most d−1 positions other than p where s and s1 di�er and, similarly, at most d−1 positions

other than p where s and s2 di�er. Hence, there are at most 1 + (d−1) + (d−1) = 2d−1
positions where s di�ers from at least one of s1, s2. However, there are 2d positions

where s1 and s2 di�er and so s must di�er from at least one of s1, s2 in each of these 2d
positions, a contradiction.

(b) (3 points) Show that the problem can be solved in O(m+ kd4d) time.

Solution: For each position p with s1(p) = s2(p) we know that s = s1(p) by part (a).

There are 2d positions p with s1(p) 6= s2(p) and for each such position we know that either

s(p) = s1(p) or s(p) = s2(p). Simply trying each possibility and checking whether it is a

valid solution gives us a running time of O(m+ kd4d).

7. A tournament is a directed graph D = (V,A) with for each pair of vertices u, v ∈ V exactly one

of the arcs (u, v) and (v, u) in A. A triangle in D is a set of three arcs forming a directed cycle:

{(u, v), (v, w), (w, u)}. Consider the following parameterized problem.

Arc Flipping in Tournaments

Instance: tournament D = (V,A) and number k ∈ N.
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Parameters: k
Question: is it possible to reverse at most k arcs from D such that the resulting tournament is

acyclic (i.e. has no directed cycle)?

(a) (5 points) Consider the following reduction rule. If an arc a is contained in at least k + 1
triangles, then reverse a and reduce k by 1. Show correctness of this reduction rule, i.e. show

that the obtained instance is a yes-instance if and only if the original instance is a yes-instance.

Solution: First suppose the original instance is a yes-instance. If arc a is not reversed,

then an arc other than a needs to be reversed in each of the at least k+ 1 triangles that a
is in. Since these triangles only overlap in a, at least k+ 1 arcs would need to be reversed,

a contradiction. Hence, arc a is reversed and at most k − 1 other arcs. So the reduced

instance is a yes-instance.

Conversely, if the reduced instance is a yes-instance, then the original instance is also a

yes-instance because we can simply reverse a and all arcs that are reversed in the solution

to the reduced instance.

(b) (5 points) Consider the following reduction rule. If there is a vertex v that is not incident to

any arc in a triangle, then delete v. Show correctness of this reduction rule.

Solution: Clearly, if the original instance is a yes-instance then the reduced instance is a

yes-instance as well because we can simply take the same solution.

Now assume that the reduced instance is a yes-instance and suppose that reversing the same

arcs in the original instance leaves us with a directed cycle. Then this directed cycle C
passes through v. Note that V \{v} can be partitioned into two sets: the set Y of vertices

with an arc to v and the set X of vertices with an arc from v. Since v is not in any triangle,

all arcs between X and Y are directed from Y to X. Directed cycle C contains at least

one of these arcs and so this arc has been reversed. However, if we instead choose not to

reverse any of the arcs between Y and X the resulting directed graph is still acyclic. Hence,

the original instance is also a yes-instance (we take the solution of the reduced instance but

choose not to reverse arcs between Y and X).

(c) (5 points) Show that, if neither of the two above reduction rules is applicable and there are

more than k(k + 2) vertices left, then the instance is a no-instance. Hence, the problem Arc

Flipping in Tournaments has a polynomial kernel.

Solution: Suppose we have a yes-instance. Let A′ be the set of arcs that is reversed in

speci�c solution. Each arc a ∈ A′ is in at most k triangles because otherwise the �rst

reduction rule would apply. Each of these triangles contains one vertex in addition to the

two endpoints of a. Hence, there are at most k + 2 vertices in a triangle containing a.
Hence, in total, there are at most k(k + 2) vertices in a triangle containing an arc of A′.
There can't be any other vertices because each vertex is incident to an arc of a triangle

(otherwise the second reduction rule would apply) and each triangle contains an arc of A′

(otherwise A′ would not be a valid solution).

End of test


