Advanced Discrete Optimization, WI14410 page 1 of 6 June 27, 2018

Exam WI14410 Advanced Discrete Optimization

June 27, 2018, 13:30-16:30

The exam consists of 7 questions. In total you can obtain 60 points. Your grade is calculated by dividing
the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using
a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of
this exam is 6. Good luck!

1. (a) (3 points) Given is the following set of points:

X:{(()?O)v (1>O)a (230)’ (Ovl)v (171)}

Give two valid formulations P; and P, for this set, with the property that P, C P;.

Solution: This is one possibility: P = {z € Ri |21+ 20 <2, 29 <1}, P, ={x € Ri |
5x1 + 4xe < 10, x2 < 1}. The inequality z1 + x9 < 2 strictly dominates 51 + 4xo < 10.

(b) (3 points) Show that dim(conv(X)) = 2 by exhibiting 3 affinely independent points in X. Do
not forget to argue why the suggested points are affinely independent.

Solution: The points (0,0), (1,0), (0,1) are affinely independent. The unit vectors
(1,0), (0,1) are clearly linearly independent, and adding the origin yields 3 affinely in-
dependent points.

(c) (2 points) The following exercise may be solved graphically. For the set X given in (a), give:

e a valid linear inequality that defines a 0-dimensional face of conv(X),
e a valid linear inequality that defines a facet of conv(X).

Solution: The inequality 1 < 2 defines the 0-dimensional face (2,0), and the inequality
x1 + w2 < 2 defines a factet (1-dimensional face).

2. (a) (3 points) et N ={1,...,n} be a set of items. The knapsack polytope is defined as
Sk =A{x € {0,1}" [ X ;en ajzj < b}. Assume that all input is positive and integer. A set
C C N is called a cover if ;.- a; > b. Given is the set

Sy = {x € {0,1}7 | 112 + 629 + 623 + bxy + 55 + dag + x7 < 19}.
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(b)

(d)

The inequality x5 + x4 + x5 + 26 < 3 is a facet-defining cover inequality for
Sk n{zec{0,1}" |2y =29 =27 =0}.

Apply maximal lifting to the variable x1, and write down the inequality that is obtained after
lifting has been applied.

Solution: Find maximal value of « such that the inequality azy + 3+ 24 + 25 + 26 < 3
is valid when x; is not fixed to zero anylonger.

a =3 —max{xs + x4 + x5 + 6 | 623 + dxy + x5 + 426 <8} =3 —1=2.

After lifting, the inequality becomes: 2x1 + z3 + x4 + x5 + 26 < 3.

(3 points) Consider again the knapsack polytope Sk . Given a cover C, the extension set E(C')
is defined as E(C) = CU{j € N\C | aj > ay, for all k € C'}. Prove that the extended cover
inequality > gy < |C| — 1 is valid for Sk.

Solution: See Exercise 1 from Lecture 3.

(2 points) Gomory's mixed-integer cut (GMIC) for the mixed-integer set

n p
S:{(:E,y) EZ?_ XR{’)_ ‘ ZCLjfL‘j‘FZQj?Jj :b}

j=1 j=1
is as follows:
f /
> fiwi+ ) % + > 95— Z T 9% = > [
Fi<f fi>f 9520 93<0

Derive a GMIC for the mixed-integer set

1 2 20
S:{(xvy)GZiXRi|$1+?y1_?y2:7}

Solution: f = % g1 = %, g2 = —% Lf 6/7 — 6. The GMIC for this row is:

1/7
1 6( 2) >6 N 1 +12 6 N 120, > 6
7y1 7y2_7 7y1 7?4 7 n Y2 =2 0.

(2 points) Given is the mixed-integer optimization problem:

maxz =z + 2y
st.—x+y
z+y

20—y

y>0, x

m IA A IA
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Derive, graphically, a split inequality for this problem.

Solution: Take for instance the split disjunction z < 1V x > 2. The inequality y < 3 is
valid for the union of the two resulting polytopes and is therefore a split inequality.

3. (2 points) Indicate whether the following statements are true or false:

e \We can determine whether the rational system of inequalities Az < b has an integer solution
in polynomial time if the dimension is fixed.

e Suppose we are given a single-row pure integer set S = {x € Z} | z;‘:l ajxrj = b} with b ¢ Z.
The Gomory fractional cut derived for this set is at least as strong as the Gomory mixed-integer
cut (GMIC) derived from the same set.

Solution: True, False

4. Consider the quadratic assignment problem QAP(A, B):

n n
F=min Y > aibyie),
PS5 i A

where A = (a;5) and B = (b;;) are real n x n matrices, and S,, denotes the set of all permutations

of {1,...,n}.

(a) (3 points) Given a graph G = (V,E) with |V| = n and an integer k < n, the densest k-
subgraph problem is to find the densest induced subgraph in G with exactly & vertices. (l.e. to
find the induced subgraph with k vertices having the maximum number of edges.)

Explain how you may obtain a densest k-subgraph of G by solving a quadratic assignment
problem of the form QAP(A, B), i.e. define suitable matrices A and B. Motivate your answer.

In particular, explain how the densest k-subgraph may be constructed from the solution of
QAP(A, B).

Solution: Define the matrix:

(1 -~ 10 0]

0 0

1 - 10 0
B = (by) 0 0 0|’
(0 0 - 0 0 0|

where the upper left k x k principal submatrix is the k x k all-ones matrix, and A the
adjacency matrix of G.

Consider QAP(A, B):

o = gg‘is); Z Zaijbga(i)w(j)’

i=1 j=1
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with optimal permutation ¢*. Now the densest k-subgraph is induced by the vertices with
labels ©*(1), ..., ¢*(k).

(b) (3 points) Consider problem QAP(A, B) in the case where A and B are diagonal matrices.
Show that the optimal value of QAP(A, B) coincides with the eigenvalue bound in this case.

Solution: Assume the diagonal entries of A and B are a;; and b;; respectively. Then these
are also the respective eigenvalues of A and B, so that the eigenvalue bound becomes

! iy (i) (i) -
in ) i

On the other hand, QAP(A, B) reduces to
2= min Y Y aibee):
L
Lpesn ,_

= min Y aibyeen),
=1

which is the same expression as the eigenvalue bound.

(c) (4 points) Let
0 21 01 2
A=(403)|,B=[10 1],
210
and calculate the Gilmore-Lawler lower bound for the resulting instance QAP(A, B). (You

may solve the linear assignment problem by inspection.) Also state whether the Gilmore-Lawler
lower bound equals z* here, and motivate your answer.

Solution: The Gilmore-Lawler lower bound equals 25 for this instance, and is obtained
from the linear assignment problem with matrix:

4 3 4
10 7 10
16 11 16

with optimal permutaion ¢ = (3 1 2) or ¢ = (1 3 2). The optimal value is z* = 27
corresponding to the same permutations.

5. In this question we again consider QAP(A, B) as defined in the previous question.

(a) (3 points) Show that:
2* = min tr(AXBTXT),
XeXy,

where X, is the set of n x n permutation matrices.
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Solution: Solution sketched on Slide 19 of 1st lecture.

(b) (3 points) Use your result in the previous exercise to show that QAP(A, B) may be solved in
polynomial time if A = AT (symmetric) and B = — BT (skew-symmetrix).

Solution: In this case z(¢) = 0 for all permutations ¢ € S,,.

(c) (4 points) Show that

z*ztr(S)%—tr(T)—i—Xmi)? {t"T(BoA-T®S—-T®I)z|z=vec(X)},
€X,,

where T and S are any fixed, symmetric matrices. (Hint: first show that tr(AX BT XT) =
vec(X)T (B ® A)vec(X)).

Solution: See Slide 7 of Lecture 3, and Exercise 1 of Week 3.

6. Consider the following variant of the CLOSEST STRING problem (where d, (s, s") is the number of
positions where sequence s and sequence s differ).
Instance: sequences si,...,s; of length m over an alphabet ¥ and a number d € N, with
dp(s1,82) = 2d.
Parameter: d
Question: does there exist a sequence s of length m such that dj(s,s;) < d forall 1 <i <k?

(a) (2 points) Show that for each solution sequence s and for each position p holds that s(p) =
s1(p) or s(p) = sa(p) (or both).

Solution: Suppose s(p) # s1(p) and s(p) # s2(p). Then, since dj,(s,s1) < d, there are at
most d—1 positions other than p where s and s; differ and, similarly, at most d—1 positions
other than p where s and sy differ. Hence, there are at most 1+ (d—1)+(d—1) =2d—1
positions where s differs from at least one of s1,s2. However, there are 2d positions
where s1 and sy differ and so s must differ from at least one of s1, 55 in each of these 2d
positions, a contradiction.

(b) (3 points) Show that the problem can be solved in O(m + kd4?) time.

Solution: For each position p with s1(p) = sa2(p) we know that s = s1(p) by part (a).
There are 2d positions p with s1(p) # sa2(p) and for each such position we know that either
s(p) = s1(p) or s(p) = sa(p). Simply trying each possibility and checking whether it is a
valid solution gives us a running time of O(m + kd4<).

7. A tournament is a directed graph D = (V, A) with for each pair of vertices u,v € V exactly one
of the arcs (u,v) and (v,u) in A. A triangle in D is a set of three arcs forming a directed cycle:
{(u,v), (v,w), (w,u)}. Consider the following parameterized problem.

ARC FLIPPING IN TOURNAMENTS
Instance: tournament D = (V, A) and number k € N.
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Parameters: &k

Question: is it possible to reverse at most k arcs from D such that the resulting tournament is
acyclic (i.e. has no directed cycle)?

(a) (5 points) Consider the following reduction rule. If an arc a is contained in at least k + 1
triangles, then reverse a and reduce k& by 1. Show correctness of this reduction rule, i.e. show
that the obtained instance is a yes-instance if and only if the original instance is a yes-instance.

Solution: First suppose the original instance is a yes-instance. If arc a is not reversed,
then an arc other than a needs to be reversed in each of the at least k + 1 triangles that a
is in. Since these triangles only overlap in a, at least k4 1 arcs would need to be reversed,
a contradiction. Hence, arc a is reversed and at most & — 1 other arcs. So the reduced
instance is a yes-instance.

Conversely, if the reduced instance is a yes-instance, then the original instance is also a

yes-instance because we can simply reverse a and all arcs that are reversed in the solution
to the reduced instance.

(b) (5 points) Consider the following reduction rule. If there is a vertex v that is not incident to
any arc in a triangle, then delete v. Show correctness of this reduction rule.

Solution: Clearly, if the original instance is a yes-instance then the reduced instance is a
yes-instance as well because we can simply take the same solution.

Now assume that the reduced instance is a yes-instance and suppose that reversing the same
arcs in the original instance leaves us with a directed cycle. Then this directed cycle C
passes through v. Note that V'\ {v} can be partitioned into two sets: the set Y of vertices
with an arc to v and the set X of vertices with an arc from v. Since v is not in any triangle,
all arcs between X and Y are directed from Y to X. Directed cycle C' contains at least
one of these arcs and so this arc has been reversed. However, if we instead choose not to
reverse any of the arcs between Y and X the resulting directed graph is still acyclic. Hence,
the original instance is also a yes-instance (we take the solution of the reduced instance but
choose not to reverse arcs between Y and X).

(c) (5 points) Show that, if neither of the two above reduction rules is applicable and there are
more than k(k + 2) vertices left, then the instance is a no-instance. Hence, the problem ARC
FLIPPING IN TOURNAMENTS has a polynomial kernel.

Solution: Suppose we have a yes-instance. Let A’ be the set of arcs that is reversed in
specific solution. Each arc @ € A’ is in at most k triangles because otherwise the first
reduction rule would apply. Each of these triangles contains one vertex in addition to the
two endpoints of a. Hence, there are at most k + 2 vertices in a triangle containing a.
Hence, in total, there are at most k(k + 2) vertices in a triangle containing an arc of A’.
There can’t be any other vertices because each vertex is incident to an arc of a triangle
(otherwise the second reduction rule would apply) and each triangle contains an arc of A’
(otherwise A’ would not be a valid solution).

End of test



