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Exam wi4410 Advanced Discrete Optimization

August 15th, 2018, 13:30�16:30

The exam consists of 7 questions. In total you can obtain 60 points. Your grade is calculated by dividing

the number of points you obtained by 6. You may use a non-graphical calculator during the exam. Using

a graphical calculator, notes, phone, smart-watch, etc. is not permitted. The total number of pages of

this exam is 7. Good luck!

1. (a) (3 points) Consider the following set X = {x ∈ R2 | 0 ≤ xi ≤ 1, i = 1, . . . , 2}. Give a valid

inequality that de�nes:

(i) an inproper face,

(ii) a zero-dimensional face,

(iii) a facet.

Solution: Here is an example of a possible answer:

(i) x1 ≤ 2,

(ii) x1 + x2 ≤ 2,

(iii) x2 ≤ 1.

(b) (6 points) Given a set {x ∈ Zn |
∑n

j=1 ajxj = a0} with a0 6∈ Z, the Gomory fractional cut

based on this set is:
n∑

j=1

fjxj ≥ f0,

where fj := aj − bajc and f0 := a0 − ba0c.
Similarly, the Gomory Mixed-Integer Cut based on the set

{(x,y) ∈ Zn × RP |
∑n

j=1 ajxj +
∑p

j=1 gjyj = a0} with a0 6∈ Z, is∑
fj≤f0

fjxj +
∑
fj>f0

f0(1− fj)
1− f0

xj +
∑
gj>0

gjyj −
∑
gj<0

f0

1− f0
gjyj ≥ f0

Consider the following integer optimization problem:

max 4x1 + 3x2

subject to 2x1 + x2 ≤ 11

−x1 + 2x2 ≤ 6

x1, x2 ≥ 0, integer



Advanced Discrete Optimization, WI4410 page 2 of 7 August 15th, 2018

Let s1 and s2 be integer slack variables in the above constraints. After solving the LP-relaxation

of the problem we obtain:

z +11
5 s1 +2

5s2 = 133
5

x2 +1
5s1 +2

5s2 = 23
5

x1 +2
5s1 −1

5s2 = 16
5

(i) (4 pts) Generate a Gomory fractional cut and a Gomory Mixed-Integer Cut from the last

row of the system of equations above.

(ii) (2 pts) Which of the two inequalities is stronger? A brief motivation su�ces.

Solution: (i):

f0 =
1

5
, fs1 =

2

5
, fs2 =

4

5
.

Gomory fractional cut:

2

5
s1 +

4

5
s2 ≥

1

5
, or 2s1 + 4s2 ≥ 1 .

Gomory mixed-integer cut:

1
5 ·

3
5

4
5

s1 +
1
5 ·

1
5

4
5

s2 ≥
1

5

or
3

4
s1 +

1

4
s2 ≥ 1 .

(ii): The two inequalities have the same right-hand side, and each of the coe�cients in the

left-hand side of the GMIC is smaller than or equal to the corresponding coe�cient in the

Gomory fractional cut. Therefore the GMIC is stronger. This also holds in general!

2. Consider the single-node �ow problem:

SSNF := {(x, y) ∈ Rn
+ × {0, 1}n |

∑
j∈N

xj = b, xj ≤ ujyj} .

A set C ⊆ N is called a �ow cover if
∑

j∈C uj > b. Let λ :=
∑

j∈C uj − b and (uj − λ)+ :=
max(uj − λ, 0).

(a) (5 points) Prove that the �ow cover inequality∑
j∈C

xj +
∑
j∈C

(uj − λ)+(1− yj) ≤ b

is valid for SSNF . (Hint: Consider the case where yj = 1 for all j ∈ C and then the case where

an arbitrary arc k ∈ C is closed.)

Solution: See Lecture 3, slide 33.
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(b) (2 points) Derive a valid �ow cover inequality for the following example:

SSNF := {(x, y) ∈ R4
+ × {0, 1}4 |

4∑
j=1

xj = 66,

0 ≤ x1 ≤ 30y1, 0 ≤ x2 ≤ 50y2, 0 ≤ x3 ≤ 20y3, 0 ≤ x4 ≤ 45y4 .

Solution: Take for instance C = {2, 3}. That gives λ = 50 + 20− 66 = 70− 66 = 4 and

the �ow cover inequality

x2 + x3 + 46(1− y2) + 16(1− y3) ≤ 66.

3. (a) (3 points) Let N := {1, . . . , n}. Consider the following knapsack set:

SK := {x ∈ {0, 1}n |
∑
j∈N

ajxj ≤ b} ,

Let C ⊆ N be such that
∑

j∈C aj > b. The family of knapsack cover inequalities,
∑

j∈C xj ≤
|C| − 1 is valid for SK . Now, consider the the speci�c instance

SK = {x ∈ {0, 1}4 | 25x1 + 20x2 + 15x3 + 10x4 ≤ 44} .

The knapsack cover inequality x2 + x3 ≤ 1 is valid for the set

conv(SK ∩ {x ∈ R4 | x4 = 1}) .

Apply maximal lifting to the variable x4 and give the resulting valid inequality.

Solution: Introduce x4 in the inequality. Don't forget that x4 is currently set equal to 1:

x2 + x3 + βx4 ≤ 1 + β .

Now set x4 equal to 0 and apply maximal lifting

β = max{x2 + x3 | 25x1 + 20x2 + 15x3 ≤ 44} − 1 ,

which yields β = 1 and the resulting inequality x2 + x3 + x4 ≤ 2.

(b) (1 point) Illustrate by a 2-dimensional example why branch-and-bound is not a polynomial-time

algorithms in �xed dimension.

Solution: See slide 31 of Lecture 4.
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4. Consider the quadratic assignment problem QAP (A,B,C):

z∗ = min
ϕ∈Sn

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j) +
n∑

i=1

ciϕ(i),

where A = (aij) , B = (bij), and C = (cij) are real n× n matrices, and Sn denotes the set of all

permutations of {1, . . . , n}. If C is the zero matrix, we write QAP (A,B) instead of QAP (A,B,C).

(a) (3 points) Given a graph G = (V,E) with |V | even, the maximum bisection problem is to

partition V into two equal sets, say V = V1 ∪ V2 with V1 ∩ V2 = ∅ and |V1| = |V2|, so that

the number of edges connecting a vertex in V1 with a vertex in V2 is a maximum. Explain how

that problem may be rewritten as a problem of the form QAP (A,B), i.e. formulate suitable

matrices A and B in terms of G. Also explain how the partition (V1, V2) is obtained from the

solution of the quadratic assignment problem you formulated.

Solution:

A is the adjacency matrix of G and B = −1
2

(
0 1
1 0

)
⊗J , where J is the all-ones matrix

of order 1
2 |V |. The vertices in V1 are given by the labels ϕ(i) i ∈ {1, . . . , 1

2 |V |} if ϕ is the

solution of QAP (A,B).

(b) (3 points) Prove that one may assume without loss of generality that the matrices A and B
have zero diagonals. In other words, given matrices A, B, C, construct new matrices, say Â,
B̂, and Ĉ so that the diagonal elements of Â, B̂ are zero, and QAP (Â, B̂, Ĉ) has the same

objective function as QAP (A,B,C).

Solution: Replace given A and B by the matrices Â and B̂ obtained by setting their

respective diagonals to zero, and replace the given C by Ĉ = (cij + aiibjj).

Then QAP (A,B,C) and QAP (Â, B̂, Ĉ) have the same objective function, since:

z(ϕ) =

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j) +

n∑
i=1

ciϕ(i)

=
∑
i 6=j

aijbϕ(i)ϕ(j) +
n∑

i=1

(
ciϕ(i) + aiibϕ(i)ϕ(i)

)
,

and the last expression is exactly the objective function of QAP (Â, B̂, Ĉ).

(c) (4 points) Consider the objective function of QAP (A,B,C), namely

z(ϕ) :=

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j) +

n∑
i=1

ciϕ(i).

Prove that the average objective function value (taken over all ϕ ∈ Sn) equals

µ(A,B,C) =
1

n(n− 1)

n∑
i,j=1
i 6=j

n∑
k,l=1
k 6=l

aijbkl +
1

n

n∑
i,j=1

(cij + aiibjj) .
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Hint: use the result of the previous exercise.

Solution: Applying Proposition 7.7 in the book to QAP (Â, B̂, Ĉ) (from the previous

exercise) yields the required result.

5. We again consider QAP (A,B,C) with objective function again denoted by

z(ϕ) :=

n∑
i=1

n∑
j=1

aijbϕ(i)ϕ(j) +

n∑
i=1

ciϕ(i).

(a) (4 points) Assume that at some node in a polytomic branch-and-bound tree, the values ϕ(i)
(i ∈ S) have been �xed for some S ⊂ {1, . . . , n}. Give the resulting QAP problemQAP (A′, B′, C ′)
at this node, i.e. give the matrices A′, B′ and C ′ in terms of A, B, C and S.

Solution: QAP (A,B,C):

minϕ∈Sn

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +
n∑

i=1

ciϕ(i)

Split the sums in the objective over S and its complement, say S̄:

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +
n∑

i=1

ciϕ(i)

=
∑
i∈S̄

∑
k∈S̄

aikbϕ(i)ϕ(k) +
n∑

i∈S̄

ciϕ(i)

+
∑
i∈S

∑
k∈S

aikbϕ(i)ϕ(k) +
n∑

i∈S
ciϕ(i)

+
∑
i∈S

∑
k∈S̄

aikbϕ(i)ϕ(k) +
∑
i∈S̄

∑
k∈S

aikbϕ(i)ϕ(k)

Thus we get a new QAP, say QAP (A′, B′, C ′) with A′ = (a′ij), B
′ = (b′ij), C

′ = (c′ij),
and

c′ik =
∑
j∈S

(aijbkj + ajibjk) + cik i, k ∈ S̄,

and

a′ij = aij , b
′
ij = bij i, j ∈ S̄,

and a constant part

const =
∑
i∈S

∑
k∈S

aikbϕ(i)ϕ(k) +

n∑
i∈S

ciϕ(i).
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Thus we get:

n∑
i=1

n∑
k=1

aikbϕ(i)ϕ(k) +
n∑

i=1

ciϕ(i)

= const +
∑
i,k∈S̄

a′ikb
′
ϕ(i)ϕ(k) +

∑
i∈S̄

c′iϕ(i).

(b) (4 points) Assume A = uuT and B = vvT for nonnegative vectors u, v ∈ Rn
+. Prove that

QAP (A,B) may be solved in polynomial time in this case.

Solution: Proposition 8.9 in the book.

(c) (2 points) Use any method of your choice to solve the following instance of QAP (A,B):

A =

 1 2 3
2 4 6
3 6 9

 , B =

 8 12 16
12 18 24
16 24 32

 .

Give the optimal value as well as the optimal permutation.

Solution: A = uuT with u = [1 2 3]T , B = vvT with v =
√

2[2 3 4]′. Therefore, by

Proposition 8.9, z∗ = (< u, v >−)2 = 2(1 · 4 + 2 · 3 + 3 · 2)2 = 2 · 162 = 512, and
ϕ∗ = (3, 2, 1).

6. (5 points) Consider the following parameterized problem.

Recolouring

Instance: graph G = (V,E), a colouring f : V → {1, 2, 3} of its vertices with three colours and an

integer k ∈ Z.
Parameter: k.
Question: is it possible to obtain a proper 3-colouring (i.e. that f(u) 6= f(v) for all {u, v} ∈ E)
by changing the colour of at most k vertices?

Prove that the Recolouring problem is FPT. Also analyze the running time of your algorithm.

Solution: If there is no edge {u, v} ∈ E with f(u) = f(v) then we are done. Otherwise, choose

such an edge and branch into four subproblems, in each subproblem, the colour of one of u, v
is changed to one of the two remaining colours and the parameter is reduced by one. Since the

search tree has depth at most k, the running time is O(4k|E|).

7. Consider the following parameterized problem.

Edge Clique Cover

Instance: graph G = (V,E) and an integer k ∈ Z.
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Parameter: k.
Question: is it possible to cover all edges of G with at most k cliques?

Here, a clique is a subset U ⊆ V such that {u, v} ∈ E for all u, v ∈ U . An edge {u, v} ∈ E is

covered by a clique U if u, v ∈ U .
(a) (5 points) Consider the following reduction rule. If there is an edge {u, v} ∈ E such that

neither u nor v has any other neighbours, then delete u and v and reduce k by one. Show

that this reduction rule is safe, i.e. that the original instance is a yes-instance if and only if the

reduced instance is a yes-instance.

Solution: Given at most k − 1 cliques that cover all edges of the reduced instance, we

can add a clique {u, v} and obtain at most k cliques that cover all edges of the original

instance. Conversely, if there exist at most k cliques that cover all edges of the original

instance, then {u, v} must be one of these cliques because this is the only possible clique

that covers the edge {u, v}. Removing {u, v} from the set of cliques then gives at most

k − 1 cliques that cover all edges of the reduced instance.

(b) (5 points) Consider the following reduction rule. If there is an edge {u, v} ∈ E such that u
and v have exactly the same set of neighbours (but the �rst reduction rule does not apply),

then delete exactly one of u and v, without changing k. Show that this reduction rule is safe.

Solution: It is clear that if the original instance is a yes-instance then the reduced instance

is a yes-instance. To show the converse, suppose there exist at most k cliques that cover

all edges of the reduced instance and suppose that vertex u was deleted by the reduction

rule. Then we can add u to each clique containing v (there must be at least one because

otherwise the �rst reduction rule would have been applicable) and then the cliques cover

all edges of the original instance.

(c) (5 points) A third reduction rule is to delete any isolated vertices. Show that if none of these

three reduction rules is applicable and there are more than 2k vertices left then the instance is

a no-instance. Hence, Edge Clique Cover has a kernel with at most 2k vertices.

Solution: Suppose the instance is a yes-instance. Then there exist at most k cliques that

cover all vertices. Since there are more than 2k vertices, there exist two vertices u, v that

are in exactly the same subset of the cliques (by the pigeonhole principle since there are at

most 2k subsets of the set of cliques). This implies that u and v have exactly the same set

of neighbours, contradicting our assumption that none of the reduction rules is applicable.

End of test


