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1. Write the following sentence on your exam:

I declare that I have made this examination on my own, with no assistance
and in accordance with the TU Delft policies on plagiarism, cheating and
fraud.

2. Let z
1
2 be the square root function with branch cut {z ∈ C | Im(z) = 0, Re(z) ≥ 0}.

Define

F (z) =

(
1 + z

1− z

) 1
2

.

Find the largest region on which F is analytic.

F is the composition of 1+z
1−z and z

1
2 , so F is analytic for all z where 1+z

1−z is analytic and

where 1+z
1−z is in the region where z

1
2 is analytic.

1+z
1−z is not analytic at z = 1, so F also has a singularity at z = 1.

Note that z
1
2 is analytic on C \ [0,∞). We determine for which z ∈ C the number 1+z

1−z
is on the branch cut [0,∞), so we solve the equation

1 + z

1− z
= a, a ∈ [0,∞).

We have for z 6= 1

1 + z = (1− z)a ⇔ (1 + a)z = a− 1 ⇔ z =
a− 1

a+ 1
.

Since a−1
a+1
∈ [−1, 1) for a ∈ [0,∞), we see that F is analytic on C \ [−1, 1].

3. Prove or disprove: There exists an analytic function f : C→ C with

Re(f(x+ iy)) = x3y.



If such a function exists, then x3y is a harmonic function, i.e.(
∂2

∂x2
+

∂2

∂y2

)
x3y = 0,

for all (x, y) ∈ R2. But we have

∂2

∂x2
x3y = 6xy,

∂2

∂y2
x3y = 0,

so the function is not harmonic. We conclude that x3y is not the real part of an analytic
function.

Alternative: Suppose that such a function f exists, then f satisfies the Cauchy-Riemann
equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

where u(x, y) = Re(f(x+ iy)) and v(x, y) = Im(f(x+ iy)). So u(x, y) = x3y, and

∂v

∂y
= 3x2y,

so that v(x, y) = 3
2
x2y2 + C1(x). Also

∂v

∂x
= −x3,

so that v(x, y) = −1
4
x4 + C2(y). Then

3

2
x2y2 + C1(x) = −1

4
x4 + C2(y),

for all (x, y) ∈ R2, or

C2(y) =
3

2
x2y2 +

1

4
x4 + C1(x),

so that C2 is not independent of x. We conclude that there is no analytic function f
with Re(f(x, y)) = x3y.

4. Let g be an entire function satisfying

|g(z)| ≤ ln(|z|+ 1), z ∈ C.

Show that g is constant.



Let z0 ∈ C. Since g is analytic on BR(z0) for arbitrary R > 0, we can use the Cauchy
estimate for f ′ on BR(z0). Let z ∈ BR(z0), then |z| ≤ |z0|+R. We have

|g(z)| ≤ ln(|z|+ 1) ≤ ln(|z0|+R + 1),

so

|g′(z0)| ≤
ln(|z0|+R + 1)

R
.

Since

lim
R→∞

ln(|z0|+R + 1)

R
= 0,

it follows that g′(z0) = 0 for any z0 ∈ C. This implies that g is a constant function.

Alternative: Let z ∈ C. Since g is analytic on C the generalized Cauchy integral formula
says that

g′(z) =
1

2πi

∫
CR(0)

g(w)

(w − z)2
dw, for R > |z|

Using the ML-inequality we obtain

|g′(z)| ≤ 1

2π

∣∣∣∣∫
CR(0)

g(w)

(w − z)2
dw

∣∣∣∣ ≤ 1

2π
· 2πR · max

|w|=R

∣∣∣∣ g(w)

(w − z)2

∣∣∣∣ ≤ R · ln(R + 1)

(R− |z|)2
.

This holds for all R > |z|, so letting R→∞ shows that that |g′(z)| = 0. Then g′(z) = 0
for all z ∈ C, hence g is constant.

5. Determine and classify the isolated singularities in C (not ∞) of

h(z) =
cosh( iπ

z
) + 1

z2 + 1
.

First determine the zeros of the denominator:

z2 + 1 = 0 ⇒ z = i, z = −i.

Note that cos( iπ±i) = cos(±π) = −1. Using l’Hôpital’s rule we find

lim
z→±i

cos( iπ
z

) + 1

z2 + 1
= lim

z→±i

− sin( iπ
z

) · −iπ
z2

2z
=
iπ sin(±πi)

2(±i)3
= 0,

so z = i and z = −i are removable singularities. Furthermore, there is an essential
singularity at 0: Letting z → 0 over the real axis gives

lim
x→0

cos(
iπ

x
) = lim

x→0

1

2
(e

π
x + e−

π
x ) =∞,



so

lim
x→0

cos( iπ
x

) + 1

x2 + 1
=∞

showing that z = 0 is a nonremovable singularity. For z = iy on the imaginary axis and
y ∈ (−1

2
, 1
2
) we have

|h(iy)| =

∣∣∣∣∣cos(π
y
) + 1

1− y2

∣∣∣∣∣ ≤ 1 + 1

1− 1
4

,

showing that z = 0 is not a pole (if it was a pole, then limz→0 |h(z)| =∞).

Alternatives:

lim
z→±i

(z ∓ i)h(z) = lim
z→±i

cos( iπ
z

) + 1

z ± i
=

cos(±π) + 1

±2i
= 0,

so z = ±i is a removable singularity.

The Laurent series at 0 for cos( iπ
z

) + 1 is

2 +
∞∑
n=1

π2n

(2n)!

1

z2n
,

and for 1
z2+1

∞∑
n=0

(−1)nz2n.

Multiplying these two series shows that the Laurent series for h at 0 contains infinitely
many nonzero coefficients for negative powers of z, so z = 0 is an essential singularity.

6. Determine the Laurent series expansion of the following functions on the region
{z ∈ C : |z + i| > 4}.

a)
1

iz + 3

b)
1

(iz + 3)2

a) Use the geometric series:

1

iz + 3
=

1

i(z + i) + 4
=

1

i(z + i)

1

1− 4i
z+i

=
1

i(z + i)

∞∑
n=0

(4i)n

(z + i)n
= −i

∞∑
n=1

(4i)n−1

(z + i)n
,

which converges absolutely for | 4i
z+i
| < 1, i.e. |z + i| > 4.



b) Use
d

dz

1

iz + 3
=

−i
(iz + 3)2

,

then using part a we obtain

1

(iz + 3)2
= i

d

dz

1

iz + 3
=
∞∑
n=1

(4i)n−1
d

dz
(z + i)−n =

∞∑
n=1

(4i)n−1n

(z + i)n+1
.

We may interchange the order of differentiation and summation because the series
converges uniformly on any closed set within the region of convergence. The region
of convergence does not change, so this is still valid for |z + i| > 4.

7. Evaluate the improper integral ∫ ∞
−∞

sin(x)

x2 + 2x+ 2
dx.

We integrate the function

f(z) =
eiz

z2 + 2z + 2

over the closed path C consisting of IR = [−R,R] and the arc CR = {Reiθ | 0 ≤ θ ≤ π},
oriented in the counterclockwise direction. The function f is analytic on C except at
the zeros of the denominator:

z2 + 2z + 2 = 0 ⇔ (z + 1)2 + 1 = 0 ⇔ (z + 1)2 = −1 ⇔ z = −1± i.

Only −1+i is inside C. Now we calculate the integral over C using the residue theorem,∫
C

f(z) dz = 2πiRes(f,−1 + i)

= 2πi lim
z→−1+i

(z + 1− i) eiz

(z + 1− i)(z + 1 + i)

= 2πi
e−i−1

2i
= πe−i−1.

Next we show that the integral over the arc CR vanishes as R → ∞. Note that for
z ∈ CR

|eiz| = |eiR(cos θ+i sin θ)| = e−R sin θ ≤ 1.

Using the ML-inequality we obtain∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ πR · 1

R2 − 2R− 2
,

so that

lim
R→∞

∫
CR

f(z) dz = 0.



We conclude that

P.V.

∫ ∞
−∞

eix

x2 + 2x+ 2
dx = lim

R→∞

∫ R

−R

eix

x2 + 2x+ 2
dx

= lim
R→∞

∫
IR

f(z) dz

= lim
R→∞

∫
C

−
∫
CR

f(z) dz = πe−i−1.

Taking the imaginary part gives

P.V.

∫ ∞
−∞

sin(x)

x2 + 2x+ 2
dx = −πe−1 sin(1).

It remains to show that the principal value integral is equal to the improper integral.
We have for large |x| ∣∣∣∣ sin(x)

x2 + 2x+ 2

∣∣∣∣ ≤ 2

x2
,

and the integrals
∫∞
1

2
x2
dx and

∫ −1
−∞

2
x2
dx converge. So the improper integral converges,

and then ∫ ∞
−∞

sin(x)

x2 + 2x+ 2
dx = P.V.

∫ ∞
−∞

sin(x)

x2 + 2x+ 2
dx = −πe−1 sin(1).

8. a) Show that z2020 + z + 1 has all its zeros in {z ∈ C : |z| < 2}.
b) Evaluate ∫

C2(0)

z2019

z2020 + z + 1
dz,

where C2(0) has positive orientation.
Hint: consider the integral over CR(0) with R > 2 and use part a.

a) Let f(z) = z2020 and g(z) = z + 1. Then for |z| = 2, we have

|g(z)| ≤ |z|+ 1 = 3 ≤ 22020 = |f(z)|.

Both f and g are analytic on and insdie C2(0), so the number of zeros of f + g on
B2(0) is equal to the number of zeros of f on B2(0) by Rouché’s theorem. Clearly
the only zero of f is 0 with multiplicity 2020, so f + g also has 2020 zeros (counted
with multiplicity) in B2(0). Since f + g is a polynomial of degree 2020 there are
exactly 2020 zeros by the fundamental theorem of algebra, so all zeros are in B2(0).



b) By the counting theorem and part a we have∫
C2(0)

2020z2019 + 1

z20202 + z + 1
dz = 2πi · 2020,

so that ∫
C2(0)

2020z2019

z20202 + z + 1
dz = 2πi · 2020−

∫
C2(0)

1

z20202 + z + 1
dz.

Since 1
z2020+z+1

has no singularities on the outside of C2(0), we have∫
C2(0)

1

z20202 + z + 1
dz =

∫
CR(0)

1

z20202 + z + 1
dz, R > 2,

by Cauchy’s theorem for multiply connected regions. Using the ML-inequality we
find ∣∣∣∣∫

CR(0)

1

z20202 + z + 1
dz

∣∣∣∣ ≤ 2πR · 1

R2020 −R− 1
,

so that this integral vanishes as R→∞. We conclude that∫
C2(0)

z2019

z20202 + z + 1
dz = 2πi

2020

2020
= 2πi.


