
Solutions Exam Complex Function Theory

AM2040
Monday June 29, 2020, 13:30–16:30

1. Write the following sentence on your exam:(0)

I declare that I have made this examination on my own, with no assistance
and in accordance with the TU Delft policies on plagiarism, cheating and
fraud.

2. Let the function L be a branch of the logarithm with branch cut(10)

{z ∈ C | Re(z) = 0, Im(z) ≥ 0}.

Evaluate ∫
[iR,−1+iR,−i,1+iR,iR]

L(z) dz, R > 0.

We consider ∫
[iR−ε,−1+iR,−i,1+iR,iR+ε]

L(z) dz

where we let ε ↓ 0. For L we can choose for example log− 3
2
π. Then L is analytic on

C \ {z ∈ C | Re(z) = 0, Im(z) ≥ 0}, so the integral only depends on the end points
and not on the path itself. We integrate over the arc C = {Reiθ | −3

2
π ≤ θ ≤ 1

2
π} in

positive direction. On this arc we have

L(z) = log− 3
2
π(z) = ln |z|+ i arg− 3

2
π(z) = lnR + iθ.

Then ∫
C

L(z) dz =

∫ 1
2
π

− 3
2
π

(lnR + iθ) · iReiθ dθ

= 0−R
∫ 1

2
π

− 3
2
π

θeiθ dθ

= −R
[
− iθeiθ

] 1
2
π

− 3
2
π
− iR

∫ 1
2
π

− 3
2
π

eiθ dθ

= −R
(

1

2
π +

3

2
π

)
= −2πR.



Alternative: use a primitive function of L and evaluate in the end points.

3. Determine and classify the isolated singularities of f(z) =
z + iπ

z sinh2(z)
.(10)

The zeros of the denominator are at kπi, k ∈ Z.

For k 6= 0,−1:

lim
z→kπi

(z − kπi)2f(z) =
kπi+ πi

kπi
lim
z→kπi

(
z − kπi
sinh(z)

)2

=
k + 1

k
6= 0,

so kπi is a pole of order 2.

For k = −1:

lim
z→−iπ

(z + πi)f(z) =
1

−iπ
lim

z→−πi

(
z + πi

sinh(z)

)2

=
i

π
6= 0,

so −πi is a pole of order 1.

For k = 0:

lim
z→0

z3f(z) = iπ lim
z→0

(
z

sinh(z)

)2

= iπ 6= 0,

so 0 is a pole of order 3.

4. Show that g(z) =
∞∑
n=1

zn

1 + zn
is analytic on {z ∈ C | |z| < 1}.(10)

Let E ⊆ B1(0) be a closed set. There exists an r ∈ (0, 1) such that E ⊆ Br(0). Then
for z ∈ E ∣∣∣∣ zn

1 + zn

∣∣∣∣ ≤ rn

1− rn
≤ rn

1− r
=: Mn

and
∞∑
n=1

Mn =
1

1− r

∞∑
n=1

rn

converges. By the Weierstrass M -test
∑∞

n=1
zn

1+zn
converges uniformly on E. zn

1+zn
is

analytic on B1(0), since it has its singularities on |z| = 1. Now g(z) is a series of analytic
functions that is uniform convergent on every closed set in B1(0), so g is analytic on
B1(0).

5. Determine the Laurent series expansion of(12)

h(z) =
i

(z + i)(z − 3i)



on the region {z ∈ C | 1 < |z − 2i| < 3}.

First determine the partial fraction decomposition for h:

i

(z + i)(z − 3i)
=

A

z + i
+

B

z − 3i
,

then A+B = 0 and B − 3A = 1, so that A = −1
4

and B = 1
4
.

Using the geometric series we obtain

1

z + i
=

1

(z − 2i) + 3i
=

1

3i

1

1− z−2i
−3i

=
−i
3

∞∑
n=0

(
i

3

)n
(z − 2i)n, |z − 2i| < 3,

and

1

z − 3i
=

1

(z − 2i)− i
=

1

z − 2i

1

1− i
z−2i

=
∞∑
n=1

in−1(z − 2i)−n, |z − 2i| > 1.

Then

h(z) =
1

4

∞∑
n=0

(
i

3

)n+1

(z − 2i)n +
1

4

∞∑
n=1

in−1(z − 2i)−n.

for 1 < |z − 2i| < 3.

6. Let f be an entire function.

a) Prove that f ∗(z) := f(z) is also entire.(10)

b) Suppose f(z) ∈ R for z ∈ (−2020, 2020). Show that(10)

f(z) = f(z), z ∈ C.

a) Use the Cauchy-Riemann equations. If f(x+iy) = u(x, y)+iv(x, y) and f ∗(x+iy) =
u∗(x, y) + iv∗(x, y), then

f ∗(x+ iy) = f(x− iy) = u(x,−y)− iv(x,−y),

so that u∗(x, y) = u(x,−y) and v∗(x, y) = −v(x,−y). Since f is analytic u and v
satisfy the CR equations. Then using the chain rule

u∗x(x, y) = ux(x,−y) = vy(x,−y) = v∗y(x, y)

and
u∗y(x, y) = −uy(x,−y) = vx(x,−y) = −v∗x(x,−y).



So u∗ and v∗ also satisfy the CR-equations. Since u and v are (real) differentiable,
so are u∗ and v∗. Conclusion: f ∗ is also entire.

Alternative: Since f is entire it has a power series expansion at 0 with radius of
convergence ∞,

f(z) =
∞∑
n=0

anz
n.

Then f ∗ has the power series expansion

f ∗(z) =
∞∑
n=0

anz
n =

∞∑
n=0

anz
n,

again with radius of convergence ∞, hence f ∗ is analytic on C.

Yet another alternative: Let us denote complex conjugation by c(z) := z. Note that
c is continuous on C. Let z0 ∈ C. If limz→z0 h(z) = L, then

lim
z→z0

h(z) = lim
z→z0

c ◦ h(z) = c(L) = L.

Furthermore, if limz→z0 h(z) = L′,

lim
z→z0

h(z) = lim
z→z0

h ◦ c(z) = lim
u→c(z0)

h(u) = L′.

Combining these two properties we have

lim
z→z0

h(z) = L′.

Now let

h(z) =
f(z)− f(z0)

z − z0
.

Since f is analytic in z0 we have L′ = limz→z0 h(z) = f ′(z0). Then

lim
z→z0

f ∗(z)− f ∗(z0)
z − z0

= lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

(
f(z)− f(z0)

z − z0

)
= lim

z→z0
h(z) = f ′(z0),

so f ∗ is differentiable in z0. This holds for any z0 ∈ C, so f ∗ is analytic on C.



b) Use the Identity Principle. For z ∈ E = (−2020, 2020),

f ∗(z) = f(z)
z∈R
= f(z)

f(z)∈R
= f(z).

E has an accumulation point in C, f and f ∗ are both analytic on C by part a, so by
the identity principle f(z) = f ∗(z) for any z ∈ C. So f(z) = f(z).

7. Let a ∈ R with |a| > 1. Evaluate(12) ∫ 2π

0

1

1 + a2 − 2a cos(θ)
dθ.

Substitute z = eiθ, then

I =

∫ 2π

0

1

1 + a2 − 2a cos(θ)
dθ

=

∫
C1(0)

1

1 + a2 − a(z + z−1)

dz

iz

=
i

a

∫
C1(0)

1

z2 − (a+ a−1)z + 1
dz

=
i

a

∫
C1(0)

1

(z − a)(z − a−1)
dz,

where C1(0) has positive orientation. The integrand f(z) = 1
(z−a)(z−a−1)

is analytic in

an on C1(0), except for a simple pole at a−1. Then using the Residue Theorem

I = 2πi
i

a
Res(f, a−1) = −2π

a
lim
z→a−1

(z − a−1)f(z) =
2π

a2 − 1
.

8. Evaluate ∫ ∞
0

x
1
3

x2 + x+ 1
dx

using the path as indicated in the picture.

r R

C1Cr

C2

CR

(16)

We evaluate

I =

∫
C

z
1
3

z2 + z + 1
dz,



where C is the path in the picture, and we use the branch of z1/3 with branch cut [0,∞),

i.e. z
1
3 = e

1
3
log0(z).

The integrand f(z) = z
1
3

z2+z+1
has singularities at the zeros of the denominator, so at

z1 = −1

2
+ i

1

2

√
3 = e

2
3
πi, z2 = −1

2
− i1

2

√
3 = e

4
3
πi.

These are both poles of order 1, and they are both inside the path C (for small r and
large R). The function f is analytic in and on C, except at its poles, so by the Residue
Theorem

I = 2πi (Res(f, z1) + Res(f, z2)) .

We have

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→e

2
3πi

z
1
3

z − e 4
3
π

=
e

2
9
πi

e
2
3
πi − e 4

3
πi

and

Res(f, z2) = lim
z→z2

(z − z2)f(z) = lim
z→e

2
3πi

z
1
3

z − e 4
3
π

=
e

4
9
πi

e
4
3
πi − e 2

3
πi
,

so that

I = 2πi
e

4
9
πi − e 2

9
πi

e
4
3
πi − e 2

3
πi

= − 2π√
3

(e
4
9
πi − e

2
9
πi).

For the integral over CR we obtain from the ML-inequality:∣∣∣∣∣
∫
CR

z
1
3

z2 + z + 1
dz

∣∣∣∣∣ ≤ 2πR
R

1
3

R2 −R− 1
,

so that

lim
R→∞

∫
CR

z
1
3

z2 + z + 1
dz = 0.

Similarly for the integral over Cr:∣∣∣∣∣
∫
Cr

z
1
3

z2 + z + 1
dz

∣∣∣∣∣ ≤ 2πr
r

1
3

1− r − r2
,

so that

lim
r↓0

∫
Cr

z
1
3

z2 + z + 1
dz = 0.

The integral over C2 and C1 can be rewritten as∫
C1

z
1
3

z2 + z + 1
dz =

∫ R

r

x
1
3

x2 + x+ 1
dx



and ∫
C2

z
1
3

z2 + z + 1
dz =

∫ r

R

(e2πix)
1
3

x2 + x+ 1
dx = −e

2
3
πi

∫ R

r

x
1
3

x2 + x+ 1
dx.

Combining all gives

(1− e
2
3
πi)

∫ ∞
0

x
1
3

x2 + x+ 1
dx = I − lim

R→∞

∫
CR

f(z)dz − lim
r↓0

∫
Cr

f(z)dz,

so that ∫ ∞
0

x
1
3

x2 + x+ 1
dx =

2π√
3

e
2
9
πi − e 4

9
πi

1− e 2
3
πi

=
2π√

3

e−
1
9
πi − e 1

9
πi

e−
1
3
πi − e 1

3
πi

=
4

3
π sin(

1

9
π).


