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1. Determine all solutions of the equation ez
2

= 1.

Use 1 = e2kπi with k ∈ Z, then we see that

ez
2

= 1 ⇔ z2 = 2kπi, k ∈ Z.

There are three cases to consider: k > 0, k < 0 and k = 0.

k = 0: z2 = 0 has solution z = 0.

k > 0: z2 = 2kπi = 2kπe
1
2
πi+2nπi with n ∈ Z. Let z = reiθ, then z2 = r2e2iθ, so that

r =
√

2kπ, θ =
1

4
π,

5

4
π.

So we find the solutions

z =
√

2kπ

(
1

2

√
2 + i

1

2

√
2

)
=
√
kπ(1 + i),

and

z =
√

2kπ

(
−1

2

√
2− i1

2

√
2

)
= −
√
kπ(1 + i).

k < 0: z2 = −2kπ(−i) = −2kπe−
1
2
πi+2nπi with n ∈ Z. Let z = reiθ, then z2 = r2e2iθ, so

that

r =
√
−2kπ, θ = −1

4
π,

3

4
π.

So we find the solutions

z =
√
−2kπ

(
1

2

√
2− i1

2

√
2

)
=
√
−kπ(1− i),

and

z =
√
−2kπ

(
−1

2

√
2 + i

1

2

√
2

)
= −
√
−kπ(1− i).

2. Compute the limit or show that the limit does not exist.

a) lim
z→∞

e−(z+i)
2

Let z →∞ along the line x− i (x ∈ R), then

lim
x→∞

e−((x−i)+i)
2

= lim
x→∞

e−x
2

= 0.

Then let z →∞ along the line i(y − 1) (the imaginary axis), then

lim
y→∞

e−((iy−i)+i)
2

= ey
2

=∞.

So the limit does not exist.



b) lim
z→0

z Log(z − 1).

Note that limz→0 Log(z − 1) does not exist, so we cannot use the rule lim f(z)g(z) =
lim f(z) · lim g(z). We use the fact that Log(z − 1) is bounded on a disc around 0: for
r > 0 and z ∈ Br(0)

|Log(z − 1)|2 = (ln |z − 1|)2 + (Arg(z − 1))2 ≤ (ln |1 + r|)2 + π2.

Then since limz→0 z = 0, we have

lim
z→0

z Log(z − 1) = 0.

3. Let f(z) = zRe(z). Determine all points z0 ∈ C for which the complex derivative f ′(z0)
exists.

We use the definition of the derivative. Let z0 ∈ C. For h ∈ C let DQ(h) be the difference
quotient given by

DQ(h) =
(z0 + h) Re(z0 + h)− z0 Re(z0)

h
=
z0 Re(h) + hRe(z0) + hRe(h)

h
,

then f is differentiable at z0 iff limh→0DQ(h) exists.

Let h = t with t ∈ R. Then

lim
t→0

DQ(t) = lim
t→0

z0t+ tRe(z0) + t2

t
= z0 + Re(z0).

Let h = it with t ∈ R. Then

lim
t→0

DQ(it) = lim
t→0

itRe(z0)

it
= Re(z0).

These limits are only equal if z0 = 0, so we may conclude that zRe(z) is not complex
differentiable at any point z0 6= 0. At z0 = 0 the complex derivative does exist:

lim
h→0

hRe(h)− 0

h
= lim

h→0
Re(h) = 0.

4. Let f be an analytic function on a region Ω satisfying

f(z) = u(x) + iv(y), z = x+ iy ∈ Ω,

where u and v are real functions. Show that f(z) = az+ b for certain constants a ∈ R and
b ∈ C.

From the Cauchy-Riemann equations we find u′(x) = v′(y) for all x, y ∈ R, which implies
both are equal to a real constant a. Then u(x) = ax+ c and v(y) = ay+ d, so f(x+ iy) =
a(x+ iy) + b with b = c+ id.

5. Calculate the following integrals.



a)

∫
[z0,z1,z2,z3]

(z − 1)
1
2 dz, where z0 = 1 + i, z1 = 2 + 3i, z2 = 4− i, z3 = 1− i and we use

the principal branch of the power function.

The function f(z) = (z− 1)
1
2 is analytic on C \ (−∞, 1], and the given path lies in this

region. Then we can evaluate the integral using a primitive function F (z) = 2
3(z − 1)

3
2

(principal branch again). Then the integral is equal to

F (1− i)− F (1 + i) =
2

3

(
(−i)

3
2 − i

3
2

)
=

2

3

(
e−

1
2
πi· 3

2 − e
1
2
πi· 3

2

)
=

2

3

(
e−

3
4
πi − e

3
4
πi
)

= −4

3
i sin(34π)

= −2

3

√
2 i.

b)

∫
C2(0)

sin(z)

4z2 + 1
dz, where C2(0) is positively oriented.

Using Cauchy’s theorem for multiply connected regions we have∫
C2(0)

sin(z)

4z2 + 1
dz =

∫
C 1

4
(i/2)

f1(z)

z − i/2
dz +

∫
C 1

4
(−i/2)

f2(z)

z + i/2
dz,

with f1(z) = sin(z)
4(z+i/2) and f2(z) = sin(z)

4(z−i/2) . f1 is analytic on and inside C 1
4
(i/2) and f2

is analytic on and inside C 1
4
(−i/2). Then using Cauchy’s integral formula we find that

the integral equals

2πi
(
f1(i/2) + f2(−i/2)

)
= 2πi

(sin(i/2)

4i
+

sin(−i/2)

−4i

)
= π sin(i/2)

= −1

2
iπ(e−

1
2 − e

1
2 ).

6. Find all entire functions f with the property |f ′(z)| ≥ 1 for all z ∈ C.
Hint: Liouville’s theorem.

Consider the function g = 1/f ′. Since f is entire, f ′ is also entire. And since f ′(z) 6= 0 for
all z, the function g is also entire. Then |g(z)| ≤ 1, so g is bounded. By Liouville’s theorem
g is a constant. Then f ′ is also constant, f ′ = a with |a| ≥ 1. This implies f(z) = az + b
with |a| ≥ 1 and b ∈ C.

7. a) Let m,n ∈ N0 with m ≥ n, and r > 0. Show that

1

2πi

∫
Cr(1)

zm

(z − 1)n+1
dz =

(
m

n

)
,

where Cr(1) has positive orientation.



Use Cauchy’s generalized integral formula with f(z) = zm, which is analytic on and
inside Cr(1). We have f (n)(1) = m(m− 1) · · · (m− n+ 1) = m!

(m−n)! , so

1

2πi

∫
Cr(1)

f(z)

(z − 1)n+1
dz =

f (n)(1)

n!
=

m!

(m− n)!n!
.

b) Use part a to prove that (
m

n

)
≤ mmn−n

(m− n)m−n
.

For m = n we have
(
m
n

)
= 1. In this case we have to interpret 00 as 1, and then the

inequality holds (and is actually an identity).

Suppose m > n. From part a and the ML-inequality (or Cauchy’s estimate) we find(
m

n

)
=

∣∣∣∣∣ 1

2πi

∫
Cr(1)

zm

(z − 1)n+1
dz

∣∣∣∣∣ ≤ 1

2π
· 2πr · Mr

rn+1
=
Mr

rn
,

where Mr = max{|zm| : |z − 1| = r}. Using |zm| = |z|m and |z| ≤ |z − 1| + 1 we find
Mr ≤ (r + 1)m, so that (

m

n

)
≤ (r + 1)m

rn
:= F (r).

This holds for all r > 0, so we determine the minimum of F . The derivative to r is

F ′(r) =
d

dr

(r + 1)m

rn
=
mrn(r + 1)m−1 − nrn−1(r + 1)m

r2n

=
(r + 1)m−1(mr − n(r + 1))

rn+1
.

This equals zero for r = n/(m− n) and F ′ changes sign here (from + to −), so F has
its minimum in n/(m− n). We conclude that

(
m

n

)
≤ (r + 1)m

rn
≤ F

(
n

m−n

)
=

(
m

m−n

)m(
n

m−n

)n =
mmn−n

(m− n)m−n
.


