Exam Markov Processes AM2570 April 6, 2021, 13:30–16:30

- Every answer must be supplemented by adequate derivation, explanation and/or calculation, or it will receive no credit; write a mini-story in which you explain the steps that lead you to the answer. You may write yours answers in Dutch or English.
- Every part of every question has the same weight; there are 10 parts.
- On the first page of your solutions, leave some space and at the end of the exam copy and sign this:

I declare that I have made this examination on my own, with no assistance and in accordance with the TU Delft policies on plagiarism, cheating and fraud.

- Please, also indicate somewhere near the beginning which of the following timeslots you are available for the face-to-face check, in the order of your preference: 10:00–12:00, 14:00–16:00, on Tuesday April 13th. If we want to speak with you, you will receive an invitation before Monday, April 12th, 18:00.
- Alarm set? Go and good luck!
- 1. Suppose that the branching process $(X_n)_{n\geq 0}$ describes the number of radioactive particles in a controlled nuclear reaction. So $X_n = k$ states there are k radioactive particles present at time n. The probability distribution of the number of "offspring" Z of a single particle is for $k \geq 0$ given by:

$$P(Z = k) = (1 - p)p^k,$$

where p is a parameter satisfying 0 . Here <math>Z = k means that this particle has k offspring. The particle itself is then lost as a radioactive particle in the next generation (so it 'dies' after having had offspring in the next generation). The number of offspring of different particles is independent.

- a) Determine the expected size $\mu = E[Z]$ of X_1 if it is given that $X_0 = 1$.
- b) Determine in two ways the values of $p \in (0,1)$ for which the probability e of ultimate extinction of this branching process equals 1.
- **2.** Let $(X_n)_{n\geq 0}$ be a discrete Markov chain with finite state space $S=\{0,1,\ldots,m\}$, and with P_X as its matrix of transition probabilities. Define for $n=0,1,2,\ldots$ the random variable Y_n by $Y_n=X_{3n}$.
 - a) Show that $(Y_n)_{n\geq 0}$ is also a discrete Markov chain with state space S; i.e. show that the *Markov property* holds: i.e. that the (conditional) probability

$$P(Y_{n+1} = j | Y_n = i, Y_{n-1} = i_{n-1}, Y_{n-2} = i_{n-2}, \dots, Y_1 = i_1, Y_0 = i_0)$$

(for those $i_0, i_1, \ldots, i_{n-1}, i, j \in S$ with $P(Y_n = i, Y_{n-1} = i_{n-1}, \ldots, Y_0 = i_0) > 0$) is equal to the (conditional) probability

$$P(Y_{n+1} = i | Y_n = i).$$

What is the matrix P_Y of transition probabilities of the Markov chain $(Y_n)_{n\geq 0}$?

- b) Show that if the Markov chain $(Y_n)_{n\geq 0}$ is irreducible, also the Markov chain $(X_n)_{n\geq 0}$ is irreducible. Does the converse hold? (so if $(X_n)_{n\geq 0}$ is irreducible, is also $(Y_n)_{n\geq 0}$ irreducible?). Give a proof or a counter-example.
- **3.** Let $(X_n)_{n\geq 0}$ be a discrete Markov chain with state space $S=\{1,2,3,4,5\}$, and with matrix of transition probabilities P, given by

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

- a) Identify the communicating classes of P. Which classes are closed? Which states are recurrent, and which are transient? Are there absorbing states?
- b) Show that P has infinitely many different invariant distributions

$$\pi = (\pi_1 \ \pi_2 \ \cdots \ \pi_5).$$

4. In this exercise we consider a variant of Ehrenfest's gas-model from Chapter 3 of the Reader.¹

Let N be a positive integer. We distribute N black balls and N white balls over two vases, one of which is black, and the other vase is white. Each vase gets exactly N balls. At time n (with $n=0,1,2,3,\ldots$) we simultaneously and randomly draw one ball from each vase, and put each ball in the vase where the other ball was drawn from. Set

 X_n = the number of black balls in the black vase at time n immediately after the exchange.

Then $(X_n)_{n\geq 0}$ is a discrete Markov chain on the state space $S=\{0,1,\ldots,N\}$.

- a) Determine the matrix P_2 of transition probabilities for N=2. Determine the unique distribution $\pi=(\pi_0 \ \pi_1 \ \pi_2)$ for N=2 (indicate why π is unique).
- b) Determine P_N for a general N (where $N \geq 2$). Someone claims that for $N \geq 2$ we have for the invariant distribution $\pi = (\pi_0 \ \pi_1 \ \cdots \ \pi_N)$ that:

$$\pi_k = {N \choose k}^2 \cdot \pi_0, \quad \text{voor } k = 0, 1, \dots, N,$$

and

$$\pi_0 = \frac{1}{\left(\begin{array}{c} 2N\\ N \end{array}\right)}.$$

Setting $\pi P_N = (x_0 \ x_1 \ x_2 \cdots x_N)$, check whether $x_0 = \pi_0$, $x_1 = \pi_1$ and $x_2 = \pi_2$.

5. Consider the taxi-stand at *Delft International Airport*, which is a small airport, where day and night taxis arrive according to a Poisson process with "rate" of 1 taxi per minute (so $\lambda = 1$), and where customers arrive according to a Poisson-process with "rate" 2 customers per minute (so $\mu = 2$). These rates are independent of the number of taxis and customers waiting, and the two Poisson-processes are also independent. A taxi waiting at the taxistand will always wait for a customer (even if there are another 100 taxis waiting at the

You don't need to know this Ehrenfest gas-model discussed in the reader to answer this exercise.

taxi-stand). However, passengers arriving at an empty taxi-stand immediately leave (and take a bus or other means of transportation), so these customers are lost for the taxi's. The taxi-central wonders how many taxis are lost and asks you—as a mathematician—to analyze the situation.

- a) What is the expected number of taxis waiting at the taxi-stand in 'steady-state'? What is the fraction of arriving passengers lost for transportation by taxi?
- b) After hearing your answers to part a), the taxi-central decides to buy a number of local taxi-companies in order to raise the arrival-rate of the taxis to $\lambda = 2$ taxis per minute. Is this a good idea? Why (not)?

The End